1
|
Liu X, Zhang Y, Zhang W, Cheng G, Tian F, Li W, Xiong J. Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO 2-Cu 2O hybrid promotes photocatalytic hydrogen production. J Colloid Interface Sci 2025; 685:173-185. [PMID: 39842307 DOI: 10.1016/j.jcis.2025.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO2-Cu2O composites were successfully accomplished via a facile chemical reduction method. The Pd-TiO2-Cu2O composite exhibited improved photocatalytic hydrogen production (13069.7 μmolg-1h-1), which was over 6 times as much as that of pure TiO2. Based on the photo/electrochemical measurements, it was proposed that a Type II heterojunction was formed at the TiO2-Cu2O interface under light irradiation, and concurrently, a Schottky barrier was established between Pd and TiO2. Accordingly, the Type II heterojunction-created built-in electric field would facilitate the separation of photogenerated charges. Simultaneously, the introduction of Pd accelerates the accumulation of electrons and further enhances the charge transfer rate. The combination of such a Type II heterojunction and Schottky junction synergistically created a multi-channel charge separation system, optimizing surface reactions and thus improving photocatalytic efficiency. This work provided a rational approach for building efficient multi-component photocatalysis systems featuring Type II heterojunction/Schottky junction for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xiao Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Yanjun Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Wuxia Zhang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China.
| | - Fan Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
2
|
Yin G, Shen H, Gong X. Ultrathin Cu-Based Porphyrin Metal-Organic Framework Modified with ZnTe Promotes Highly Selective Photocatalytic CO 2 Reduction to CO. Inorg Chem 2025; 64:6943-6951. [PMID: 40167475 DOI: 10.1021/acs.inorgchem.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) into value-added chemical fuels is an effective strategy to address the fossil fuel crisis and global warming. Herein, a novel p-n junction composed of ZnTe nanoparticles and Cu-TCPP nanosheets was successfully constructed for efficient CO2-to-CO conversion. Structural and spectroscopic characterization confirmed the establishment of the p-n junction, which enhances charge separation and transfer. The ZnTe/Cu-TCPP composite exhibits enhanced photocatalytic CO2 reduction with CO as the primary product (120.53 μmol g-1), achieving 4.8- and 5.9-fold yield improvements over pristine ZnTe and Cu-TCPP, respectively. DFT calculations revealed a significantly enhanced CO2 adsorption energy (-0.549 eV) on the ZnTe/Cu-TCPP heterojunction, promoting the reaction. In situ DRIFTS analysis confirmed the presence of key intermediates (*COOH, *CH3, and *CO), validating their roles in the selective CO2-to-CO conversion pathways. A mechanistic study further elucidated the contribution of each component in the reaction process. Additionally, the ZnTe/Cu-TCPP photocatalyst exhibited excellent stability, demonstrating its potential for sustainable CO2 reduction.
Collapse
Affiliation(s)
- Guilin Yin
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Hui Shen
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Xiu Gong
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| |
Collapse
|
3
|
Paredes P, Rauwel E, Wragg DS, Rapenne L, Gélard I, Rauwel P. A comparative study of Cu-based nanoparticles and their spin-coated films: photocatalytic degradation mechanisms and efficiencies towards malachite green and neutral red azo dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:314-334. [PMID: 39681785 DOI: 10.1007/s11356-024-35785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
In this work, a comparison of the photocatalytic activity of free-standing Cu-based nanoparticle mixtures and spin-coated nanoparticle films under visible-light radiation is conducted. Herein, Cu2O, Cu2O-Cu, Cu2O-Cu3N-Cu, and Cu3N-Cu nanoparticle mixtures were successfully synthesized by a non-aqueous sol-gel route and then deposited on a glass substrate by spin-coating. The surface chemistry of the nanoparticles studied by X-ray photoelectron spectroscopy (XPS) allowed elucidating the nanoparticle synthesis mechanism. The UV-Vis absorption spectroscopy illustrates that photocatalytic activity is attributed to the high specific surface of the nanoparticles and their wider absorption range region from 500 to 1100 nm. Unlike the free-standing photocatalysts, the photocatalytic effect of spin-coated nanoparticle films enabled their facile reclamation, which solves a key issue for practical applications of the photocatalysts. The photocatalytic performances on neutral red and malachite green organic dyes were influenced by the type of visible light sources, i.e., solar simulator and natural sunlight. The results indicate that photodegradation efficiency is the highest for Cu2O nanoparticles, reaching values of 82% for neutral red and 94% for malachite green. We also demonstrate that the degradation of cationic neutral red undergoes a photoconversion to its neutral form during the degradation process, which in turn, lowers its degradation efficiency. On the other hand, higher degradation efficiency was observed on malachite green owing to its unique cationic form, soluble in aqueous solutions.
Collapse
Affiliation(s)
- Patricio Paredes
- Institute of Forestry and Engineering, Estonian University of Life Sciences, 51014, Tartu, Estonia
| | - Erwan Rauwel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia
| | | | - Laetitia Rapenne
- Grenoble Institute of Engineering, LMGP, University Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Isabelle Gélard
- Grenoble Institute of Engineering, LMGP, University Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Protima Rauwel
- Institute of Forestry and Engineering, Estonian University of Life Sciences, 51014, Tartu, Estonia.
- Department of Aeronautical Engineering, Estonian Aviation Academy, 61707, Tartu County, Estonia.
| |
Collapse
|
4
|
Liu Q, Yang G, Li R, Yang X, Duan Y, Chen F, Shen Z. Principle Design of C-C Coupling Pathway Towards Highly Selective C2 Products Using Photocatalytic CO 2 Reduction:A Review. Chem Asian J 2024:e202401379. [PMID: 39676051 DOI: 10.1002/asia.202401379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Photocatalytic conversion of environmental CO2 into valuable fuels is expected to alleviate fossil fuel and pollution problems. However, intricate product-reaction pathways complicate the regulation of product selectivity. Most studies in this field have focused on increasing productivity rather than on controlling product formation. To date, the major products of photocatalytic CO2 reduction reactions (CO2RRs) are C1 compounds, as opposed to the higher-value C2 compounds, because of the low C2 selectivity of this process. The design of C-C coupled pathways is paramount to facilitate selective access to C2 products in the photocatalytic CO2RR. In this review, we discuss the mechanisms and pathways of CO2RR product generation based on recent research results and summarise the work on CO2RR to C2 products. This review aims to modulate the product-generation pathway to improve the yield and selectivity of C2 products by facilitating C-C coupling reactions. Finally, some of the current challenges in the field of the CO2RR to C2 are outlined, including possible mechanistic interpretations, cost of catalyst use, reactor design, and potential solutions.
Collapse
Affiliation(s)
- Qian Liu
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Guang Yang
- Nanke Youyi (Tianjin) Technology Co., LTD, Tianjin, 300192, P.R. China
| | - Ruru Li
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Xiaowen Yang
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Yingnan Duan
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Fangyuan Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zhurui Shen
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| |
Collapse
|
5
|
Ni S, Wu W, Yang Z, Zhang M, Yang J. Influence of Copper Valence in CuO x/TiO 2 Catalysts on the Selectivity of Carbon Dioxide Photocatalytic Reduction Products. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1930. [PMID: 39683318 DOI: 10.3390/nano14231930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The Cu cocatalyst supported on the surface of TiO2 photocatalysts has demonstrated unique activity and selectivity in photocatalytic CO2 reduction. The valence state of copper significantly influences the catalytic process; however, due to the inherent instability of copper's valence states, the precise role of different valence states in CO2 reduction remains inadequately understood. In this study, CuOx/TiO2 catalysts were synthesized using an in situ growth reduction method, and we investigated the impact of various valence copper species on CO2 photocatalytic reduction. Our results indicate that Cu+ and Cu0 serve as primary active sites, with the selectivity for CH4 and CO products during CO2 photoreduction being closely related to their respective ratios on the catalyst surface. The adsorption and activation mechanisms of CO on both Cu+ and Cu0 surfaces are identified as critical factors determining product selectivity in photocatalytic processes. Furthermore, it is confirmed that Cu+ primarily facilitates CH4 production while Cu0 is responsible for generating CO. This study provides valuable insights into developing highly selective photocatalysts.
Collapse
Affiliation(s)
- Sha Ni
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Wenjing Wu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Zichao Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Min Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| |
Collapse
|
6
|
Chen K, Park J, Yadav S, Kim G, Dao V, Uthirakumar P, Lee IH. Sputtering induced the architecture of "needle mushroom" shaped Cu2O-NiCo2O4 heterostructure with novel morphology and abundant interface for high-efficiency electrochemical water oxidation. J Chem Phys 2024; 161:194707. [PMID: 39555763 DOI: 10.1063/5.0221991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/29/2024] [Indexed: 11/19/2024] Open
Abstract
Oxygen evolution reaction (OER) is widely recognized as a bottleneck in the kinetics and activity of decomposition water. Unique geometric design and compositional regulation are important technologies for achieving significant activity and excellent kinetics, but they continue to face obstacles in reaction thermodynamics and kinetic response. Here, a "needle mushroom" shaped Cu2O-NiCo2O4 heterostructure with abundant active sites and optimized conductivity that is grown on the Nickel-foam (NF) (labeled as Cu2O-NiCo2O4/NF-2) is prepared using advanced magnetron sputtering strategies for electrochemical water oxidation. Based on the excellent geometric advantages and efficient charge transfer capabilities, the catalyst of Cu2O-NiCo2O4/NF-2 shows superior electrocatalytic activity (low overpotential) and kinetics (low electrochemical impedance) compared with nanoneedle shaped Cu2O-NiCo2O4/NF-1 and NiCo2O4/NF for OER in alkaline medium. This work demonstrates a practical and economical strategy toward the fabrication of ternary transition metal oxides for water oxidation.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaehong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunny Yadav
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyucheol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vandung Dao
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Periyayya Uthirakumar
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Tai Y, Yang B, Li J, Meng L, Xing P, Wang S. Design and Preparation of Heterostructured Cu 2O/TiO 2 Materials for Photocatalytic Applications. Molecules 2024; 29:5028. [PMID: 39519669 PMCID: PMC11547863 DOI: 10.3390/molecules29215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The extensive use of fossil fuels has sped up the global development of the world economy and is accompanied by significant problems, such as energy shortages and environmental pollution. Solar energy, an inexhaustible and clean energy resource, has emerged as a promising sustainable alternative. Light irradiation can be transformed into electrical/chemical energy, which can be used to remove pollutants or transform contaminants into high-value-added chemicals through photocatalytic reactions. Therefore, photocatalysis is a promising strategy to overcome the increasing energy and environmental problems. As is well-known, photocatalysts are key components of photocatalytic systems. Among the widely investigated photocatalysts, titanium dioxide (TiO2) has attracted great attention owing to its excellent light-driven redox capability and photochemical stability. However, its poor solar light response and rapid recombination of electron-hole pairs limit its photocatalytic applications. Therefore, strategies to enhance the photocatalytic activity of TiO2 by narrowing its bandgap and inhibiting the recombination of charges have been widely accepted. Constructing heterojunctions with other components, including cuprous oxide (Cu2O), has especially narrowed the bandgap, providing a promising means of solving the present challenges. This paper reviews the advances in research on heterostructured Cu2O/TiO2 photocatalysts, such as their synthesis methods, mechanisms for the enhancement of photocatalytic performance, and their applications in hydrogen production, CO2 reduction, selective synthesis, and the degradation of pollutants. The mechanism of charge separation and transfer through the Cu2O/TiO2 heterojunctions and the inherent factors that lead to the enhancement of photocatalytic performance are extensively discussed. Additionally, the current challenges in and future perspectives on the use of heterostructured Cu2O/TiO2 photocatalysts are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; (Y.T.); (B.Y.); (J.L.); (L.M.); (P.X.)
| |
Collapse
|
8
|
Wang H, Yan C, Xu M, Li J, Zhang Z, Song X, Liu X, Huo P. Pd Nanoparticle-Modified BiOBr/CdS S-Scheme Photocatalyst for Enhanced Conversion of CO 2. Inorg Chem 2024; 63:17274-17286. [PMID: 39213634 DOI: 10.1021/acs.inorgchem.4c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
S-scheme heterojunction photocatalyst-coupled plasma-resonance effect can enhance the response range and absorption of light and charge transfer, and, at the same time, obtain strong redox ability, which is an effective way to improve CO2 conversion. In this work, plasma S-scheme heterojunctions of Pd/BiOBr/CdS with heterogeneous interfaces have been successfully constructed by a simple hydrothermal method. The possible reaction mechanism was proposed by in situ infrared, ultraviolet-visible spectroscopy (UV-vis), electron paramagnetic resonance (ESR), density functional theory (DFT), and electrochemical techniques. It was proved that the plasma S-scheme heterojunction can enhance the charge separation efficiency and improve the photocatalytic activity. When the loading ratio is Pd0.6-10%-BiOBr/CdS, it has the best performance, and the CO yield is 30.24 μmol/g, which is 15 and 30 times that of pure BiOBr and CdS, respectively. The results show that with the strong absorption of photon energy and the special electron transfer mode of S-scheme heterojunction, the charge can be effectively separated and transferred, and the photocatalytic activity is significantly improved. This study provides a useful strategy for charge transfer kinetics of plasma S-scheme heterojunction photocatalysts.
Collapse
Affiliation(s)
- Huiqin Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenlong Yan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengyang Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinze Li
- China Construction Eco-environmental Protection Technology CO., LTD., Suzhou 215124, PR China
| | - Ziyang Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
9
|
Wang Z, Min S, Li R, Lin W, Li K, Wang S, Kang L. Constructing cuprous oxide-modified zinc tetraphenylporphyrin ultrathin nanosheets heterojunction for enhanced photocatalytic carbon dioxide reduction to methane. J Colloid Interface Sci 2024; 667:212-222. [PMID: 38636223 DOI: 10.1016/j.jcis.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The application of supermolecular naonostructures in the photocatalytic carbon dioxide reduction reaction (CO2RR) has attracted increasing attentions. However, it still faces significant challenges, such as low selectivity for multi-electron products and poor stability. Here, the cuprous oxide (Cu2O)-modified zinc tetraphenylporphyrin ultrathin nanosheets (ZnTPP NSs) are successfully constructed through the aqueous chemical reaction. Comprehensive characterizations confirm the formation of type-II heterojunction between Cu2O and ZnTPP in Cu2O@ZnTPP, and the electron transfer from Cu2O to ZnTPP through the Zn-O-Cu bond under the static contact. Under the visible-light irradiation (λ > 420 nm), the optimized Cu2O@ZnTPP sample as catalyst for photocatalytic CO2RR exhibits the methane (CH4) evolution rate of 120.9 μmol/g/h, which is ∼ 4 and ∼ 10 times those of individual ZnTPP NSs (28.0 μmol/g/h) and Cu2O (12.8 μmol/g/h), respectively. Meanwhile, the CH4 selectivity of ∼ 98.7 % and excellent stability can be achieved. Further experiments reveal that Cu2O@ZnTPP has higher photocatalytic conversion efficiency than Cu2O and ZnTPP NSs, and the photoinduced electron transfer from ZnTPP to Cu2O can be identified via the path of ZnTPP→ (ZnTPP•ZnTPP)*→ ZnTPP-→ Zn-O-Cu → Cu2O. Consequently, Cu2O@ZnTPP exhibits a shorter electron-hole separation lifetime (3.3 vs. 9.3 ps) and a longer recombination lifetime (23.1 vs. 13.4 ps) than individual ZnTPP NSs. This work provides a strategy to construct the organic nanostructures for photocatalytic CO2RR to multi-electron products.
Collapse
Affiliation(s)
- Zhuoyue Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Shihao Min
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Renfu Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Wenlie Lin
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Kang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Shoufeng Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Longtian Kang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China.
| |
Collapse
|
10
|
Velásquez-Méndez KL, Alfonso JE, Bethencourt M, Cifredo G, Cubillos GI. Characterization of NiCuO xN y Coatings Obtained via RF Sputtering: Structure, Morphology, and Optical Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3264. [PMID: 38998347 PMCID: PMC11243461 DOI: 10.3390/ma17133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
The rapid advancement of technology necessitates the continual development of versatile materials that can adapt to new electronic devices. Rare earth elements, which are scarce in nature, possess the set of properties required for use as semiconductors. Consequently, this research aims to achieve similar properties using materials that are abundant in nature and have a low commercial cost. To this end, nickel and copper were utilized to synthesize thin films of nickel-copper binary oxynitride via reactive RF sputtering. The influence of nitrogen flow on the structure, morphology, chemical composition, and optical properties of the films was investigated using various characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), as well as transmittance and absorbance measurements. The crystalline structure of the films shows that they can have preferential growth or be polycrystalline according to the nitrogen flow used during deposition and that both the oxides and oxynitrides of metals are formed. We identified unknown phases specific to this material, termed "NiCuOxNy". The morphology revealed that the grain size of the coatings was dependent on the nitrogen flow rate, with grain size decreasing as the nitrogen flow rate increased. Notably, the coatings demonstrated transparency for wavelengths exceeding 1000 nm, with an optical band gap ranging from 1.21 to 1.86 eV.
Collapse
Affiliation(s)
- Karen Lizzette Velásquez-Méndez
- Grupo de Materiales y Procesos Químicos, Departamento de Química, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá 16486, Colombia
| | - José Edgar Alfonso
- Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá 14490, Colombia
| | - Manuel Bethencourt
- Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, Institute of Marine Science (INMAR), University of Cadiz, Polígono del Rio San Pedro s/n, 11510 Puerto Real, Spain
| | - Gustavo Cifredo
- Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, Institute of Marine Science (INMAR), University of Cadiz, Polígono del Rio San Pedro s/n, 11510 Puerto Real, Spain
| | - Gloria Ivonne Cubillos
- Grupo de Materiales y Procesos Químicos, Departamento de Química, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá 16486, Colombia
| |
Collapse
|
11
|
Yuan Z, Zhu X, Gao X, An C, Wang Z, Zuo C, Dionysiou DD, He H, Jiang Z. Enhancing photocatalytic CO 2 reduction with TiO 2-based materials: Strategies, mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100368. [PMID: 38268554 PMCID: PMC10805649 DOI: 10.1016/j.ese.2023.100368] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
The concentration of atmospheric CO2 has exceeded 400 ppm, surpassing its natural variability and raising concerns about uncontrollable shifts in the carbon cycle, leading to significant climate and environmental impacts. A promising method to balance carbon levels and mitigate atmospheric CO2 rise is through photocatalytic CO2 reduction. Titanium dioxide (TiO2), renowned for its affordability, stability, availability, and eco-friendliness, stands out as an exemplary catalyst in photocatalytic CO2 reduction. Various strategies have been proposed to modify TiO2 for photocatalytic CO2 reduction and improve catalytic activity and product selectivity. However, few studies have systematically summarized these strategies and analyzed their advantages, disadvantages, and current progress. Here, we comprehensively review recent advancements in TiO2 engineering, focusing on crystal engineering, interface design, and reactive site construction to enhance photocatalytic efficiency and product selectivity. We discuss how modifications in TiO2's optical characteristics, carrier migration, and active site design have led to varied and selective CO2 reduction products. These enhancements are thoroughly analyzed through experimental data and theoretical calculations. Additionally, we identify current challenges and suggest future research directions, emphasizing the role of TiO2-based materials in understanding photocatalytic CO2 reduction mechanisms and in designing effective catalysts. This review is expected to contribute to the global pursuit of carbon neutrality by providing foundational insights into the mechanisms of photocatalytic CO2 reduction with TiO2-based materials and guiding the development of efficient photocatalysts.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Xianglin Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xianqiang Gao
- College of Forestry, Shandong Agricultural University, Taian, 271018, PR China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Zheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Cheng Zuo
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
12
|
Chong C, Boong SK, Raja Mogan T, Lee JK, Ang ZZ, Li H, Lee HK. Catalyst-On-Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co-Photocatalyst for Efficient Light-To-Chemical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309983. [PMID: 38174596 DOI: 10.1002/smll.202309983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu2O co-photocatalyst than the fully deposited design (full-AgOcta@Cu2O). Mass-normalized rate constants of edge-AgOcta@Cu2O reveal up to 20-fold and 3-fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
Collapse
Affiliation(s)
- Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Siew Kheng Boong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tharishinny Raja Mogan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jinn-Kye Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering drive 3, Singapore, 117580, Singapore
| |
Collapse
|
13
|
Qian H, Yuan B, Liu Y, Zhu R, Luan W, Zhang C. Oxygen vacancy enhanced photocatalytic activity of Cu 2O/TiO 2 heterojunction. iScience 2024; 27:109578. [PMID: 38638573 PMCID: PMC11024930 DOI: 10.1016/j.isci.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed that Cu2O/TiO2's performance is influenced by Cu content. The ideal Cu mass fraction in Cu2O/TiO2, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 μmol g-1 h-1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for ∗CO2 to ∗COOH conversion in Cu2O/TiO2 with oxygen vacancy compared to TiO2, suggesting that oxygen vacancies enhance photocatalytic activity.
Collapse
Affiliation(s)
- Hong Qian
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Binxia Yuan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhao Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Rui Zhu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Weiling Luan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengxi Zhang
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
14
|
You F, Zhou T, Li J, Huang S, Chang C, Fan X, Zhang H, Ma X, Gao D, Qi J, Li D. Rich oxygen vacancies in confined heterostructured TiO 2@In 2S 3 hybrid for boosting solar-driven CO 2 reduction. J Colloid Interface Sci 2024; 660:77-86. [PMID: 38241873 DOI: 10.1016/j.jcis.2024.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Solar energy driving CO2 reduction is a potential strategy that not only mitigates the greenhouse effect caused by high CO2 level in atmosphere, but also yields carbon chemicals/fuels at the same time. Herein, a facile way to design the heterogeneous TiO2@In2S3 hollow structures possessing robust light harvesting in both ultraviolet and visible regions is proposed and exhibits a higher generation rate of 25.35 and 1.24 μmol·g-1·h-1 for photocatalytic CO2 reduction to CO and CH4, respectively. The excellent photocatalytic catalytic performance comes from i) the confined heterostructured TiO2@In2S3 possesses a suitable band structure and a broadband-light absorbing capacity for CO2 photoreduction, ii) the rich interfaces between nanosized TiO2 and In2S3 on the shell can significantly reduce the diffusion length of carriers and enhance the utilization efficiency of photogenerated electron-hole pairs, and iii) enriched surface oxygen vacancies can provide more active sites for CO2 adsorption.
Collapse
Affiliation(s)
- Feifei You
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Tianhao Zhou
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jiaxin Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shihui Huang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Chuntao Chang
- Jiangsu Yueda Cotton Spinning Co., LTD, Yancheng 224051, PR China.
| | - Xiaoyu Fan
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Hao Zhang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaohong Ma
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Dawei Gao
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Danyang Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
15
|
Zhou J, Zhu Z, Li Q, Zhang Q, Liu Z, Deng Q, Zhou Z, Li C, Fu L, Zhou J, Li H, Wu K. Fabrication of Heterostructural FeNi 3-Loaded Perovskite Catalysts by Rapid Plasma for Highly Efficient Photothermal Reverse Water Gas Shift Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307302. [PMID: 37994389 DOI: 10.1002/smll.202307302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Metal-semiconductor heterostructured catalysts have attracted great attention because of their unique interfacial characteristics and superior catalytic performance. Exsolution of nanoparticles is one of the effective and simple ways for in-situ growth of metal nanoparticles embedded in oxide surfaces and their favorable dispersion and stability. However, both high-temperature and a reducing atmosphere are required simultaneously in conventional exsolution, which is time-consuming and costly, and particles often agglomerate during the process. In this work, Ca0.9Ti0.8Ni0.1Fe0.1O3-δ (CTNF) is exposed to dielectric blocking discharge (DBD) plasma at room temperature to fabricate alloying FeNi3 nanoparticles from CTNF perovskite. FeNi3-CTNF has outstanding catalytic activity for photothermal reverse water gas shift reaction (RWGS). At 350 °C under full-spectrum irradiation, the carbon monoxide (CO) yield of FeNi3-CTNF (10.78 mmol g-1 h-1) is 11 times that of pure CaTiO3(CTO), and the CO selectivity is 98.9%. This superior catalytic activity is attributed to the narrow band gap, photogenerated electron migration to alloy particles, and abundant surface oxygen vacancies. The carbene pathway reaction is also investigated through in-situ Raman spectroscopy. The present work presents a straightforward method for the exsolution of nanoalloys in metal-semiconductor heterostructures for photothermal CO2 reduction.
Collapse
Affiliation(s)
- Jun Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zihe Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qinghao Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qiankai Zhang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zhengrong Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qinyuan Deng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zilin Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Cunxin Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lei Fu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jiacheng Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Haonan Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kai Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| |
Collapse
|
16
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Huang J, Wu T, Dai C, Xie Y, Zeng C. Improved Charge Separation and CO 2 Affinity of In 2O 3 by K Doping with Accompanying Oxygen Vacancies for Boosted CO 2 Photoreduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38340084 DOI: 10.1021/acs.langmuir.3c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The CO2 photocatalytic conversion efficiency of the semiconductor photocatalyst is always inhibited by the sluggish charge transfer and undesirable CO2 affinity. In this work, we prepare a series of K-doped In2O3 catalysts with concomitant oxygen vacancies (OV) via a hydrothermal method, followed by a low-temperature sintering treatment. Owing to the synergistic effect of K doping and OV, the charge separation and CO2 affinity of In2O3 are synchronously promoted. Particularly, when P/P0 = 0.010, at room temperature, the CO2 adsorption capacity of the optimal K-doped In2O3 (KIO-3) is 2336 cm3·g-1, reaching about 6000 times higher than that of In2O3 (0.39 cm3·g-1). As a result, in the absence of a cocatalyst or sacrificial agent, KIO-3 exhibits a CO evolution rate of 3.97 μmol·g-1·h-1 in a gas-solid reaction system, which is 7.6 times that of pristine In2O3 (0.52 μmol·g-1·h-1). This study provides a novel approach to the design and development of efficient photocatalysts for CO2 conversion by element doping.
Collapse
Affiliation(s)
- Jiayang Huang
- Institute of Advanced Materials, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China
| | - Tao Wu
- Institute of Advanced Materials, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, PR China
| | - Yunchang Xie
- Institute of Advanced Materials, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China
| | - Chao Zeng
- Institute of Advanced Materials, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
18
|
Tang R, Wang H, Dong X, Zhang L, Sun Y, Dong F. Selectivity regulation of CO 2 photoreduction via the electron configuration of active sites on single-atom photocatalysts. J Colloid Interface Sci 2024; 655:243-252. [PMID: 37944372 DOI: 10.1016/j.jcis.2023.10.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
The major challenge in the photocatalytic reduction of CO2 is to achieve high conversion efficiency while maintaining selectivity for a single product. Photocatalysts containing single-metal Cu2+ with 3d9 and Zn2+ with 3d10 on g-C3N4 were prepared using a high-energy ball mill. Single-atom Zn inner electron configuration is stable (3d10) and the peripheral empty orbitals act as electron traps to trap photo-generated electrons and improve the efficiency of charge separation; Zn is an active site to enhance the adsorption and activation of CO2. The stable electron configuration can reduce the energy required for the overall reaction and increase the activity while changing the reaction pathway to form CO. As a result, the 0.5 mol% Zn/g-C3N4 (Zn-CN-0.5) photocatalyst achieves ∼100 % selectivity for the photocatalytic reduction of CO2 to CO at a rate of ∼21.1 μmol·g-1·h-1. In contrast, the 0.5 mol% Cu/g-C3N4 (Cu-CN-0.5) photocatalyst with an unstable electronic structure does not exhibit high selectivity.
Collapse
Affiliation(s)
- Ruofei Tang
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313000, China; Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu, 611731, China
| | - Hong Wang
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Xing'an Dong
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Yanjuan Sun
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313000, China.
| |
Collapse
|
19
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
20
|
Chen X, Pan WG, Hong LF, Hu X, Wang J, Bi ZX, Guo RT. Ti 3 C 2 -modified g-C 3 N 4 /MoSe 2 S-Scheme Heterojunction with Full-Spectrum Response for CO 2 Photoreduction to CO and CH 4. CHEMSUSCHEM 2023; 16:e202300179. [PMID: 37041127 DOI: 10.1002/cssc.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Energy shortage and global warming caused by the extensive use of fossil fuels are urgent problems to be solved at present. Photoreduction of CO2 is considered to be a feasible solution. The ternary composite catalyst g-C3 N4 /Ti3 C2 /MoSe2 was synthesized by hydrothermal method, and its physical and chemical properties were studied by an array of characterization and tests. In addition, the photocatalytic performance of this series of catalysts under full spectrum irradiation was also tested. It is found that the CTM-5 sample has the best photocatalytic activity, and the yields of CO and CH4 are 29.87 and 17.94 μmol g-1 h-1 , respectively. This can be ascribed to the favorable optical absorption performance of the composite catalyst in the full spectrum and the establishment of S-scheme charge transfer channel. The formation of heterojunctions can effectively promote charge transfer. The addition of Ti3 C2 materials provides plentiful active sites for CO2 reaction, and its superior electrical conductivity is also favorable for the migration of photogenerated electrons.
Collapse
Affiliation(s)
- Xin Chen
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, P. R. China
- Shanghai Non-carbon energy conversion and utilization institute, Shanghai, 200240, P. R. China
| | - Long-Fei Hong
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xing Hu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Juan Wang
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Zhe-Xu Bi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, P. R. China
- Shanghai Non-carbon energy conversion and utilization institute, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Lu C, Cao D, Zhang H, Gao L, Shi W, Guo F, Zhou Y, Liu J. Boosted Tetracycline and Cr(VI) Simultaneous Cleanup over Z-Scheme WO 3/CoO p-n Heterojunction with 0D/3D Structure under Visible Light. Molecules 2023; 28:4727. [PMID: 37375282 DOI: 10.3390/molecules28124727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a Z-Scheme WO3/CoO p-n heterojunction with a 0D/3D structure was designed and prepared via a simple solvothermal approach to remove the combined pollution of tetracycline and heavy metal Cr(VI) in water. The 0D WO3 nanoparticles adhered to the surface of the 3D octahedral CoO to facilitate the construction of Z-scheme p-n heterojunctions, which could avoid the deactivation of the monomeric material due to agglomeration, extend the optical response range, and separate the photogenerated electronhole pairs. The degradation efficiency of mixed pollutants after a 70 min reaction was significantly higher than that of monomeric TC and Cr(VI). Among them, a 70% WO3/CoO heterojunction had the best photocatalytic degradation effect on the mixture of TC and Cr(VI) pollutants, and the removing rate was 95.35% and 70.2%, respectively. Meanwhile, after five cycles, the removal rate of the mixed pollutants by the 70% WO3/CoO remained almost unchanged, indicating that the Z-scheme WO3/CoO p-n heterojunction has good stability. In addition, for an active component capture experiment, ESR and LC-MS were employed to reveal the possible Z-scheme pathway under the built-in electric field of the p-n heterojunction and photocatalytic removing mechanism of TC and Cr(VI). These results offer a promising idea for the treatment of the combined pollution of antibiotics and heavy metals by a Z-scheme WO3/CoO p-n heterojunction photocatalyst, and have broad application prospects: boosted tetracycline and Cr(VI) simultaneous cleanup over a Z-scheme WO3/CoO p-n heterojunction with a 0D/3D structure under visible light.
Collapse
Affiliation(s)
- Changyu Lu
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Delu Cao
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Hefan Zhang
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Luning Gao
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Feng Guo
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yahong Zhou
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Jiahao Liu
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| |
Collapse
|
22
|
Li CF, Guo RT, Zhang ZR, Wu T, Pan WG. Converting CO 2 into Value-Added Products by Cu 2 O-Based Catalysts: From Photocatalysis, Electrocatalysis to Photoelectrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207875. [PMID: 36772913 DOI: 10.1002/smll.202207875] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
Converting CO2 into value-added products by photocatalysis, electrocatalysis, and photoelectrocatalysis is a promising method to alleviate the global environmental problems and energy crisis. Among the semiconductor materials applied in CO2 catalytic reduction, Cu2 O has the advantages of abundant reserves, low price and environmental friendliness. Moreover, Cu2 O has unique adsorption and activation properties for CO2 , which is conducive to the generation of C2+ products through CC coupling. This review introduces the basic principles of CO2 reduction and summarizes the pathways for the generation of C1 , C2 , and C2+ products. The factors affecting CO2 reduction performance are further discussed from the perspective of the reaction environment, medium, and novel reactor design. Then, the properties of Cu2 O-based catalysts in CO2 reduction are summarized and several optimization strategies to enhance their stability and redox capacity are discussed. Subsequently, the application of Cu2 O-based catalysts in photocatalytic, electrocatalytic, and photoelectrocatalytic CO2 reduction is described. Finally, the opportunities, challenges and several research directions of Cu2 O-based catalysts in the field of CO2 catalytic reduction are presented, which is guidance for its wide application in the energy and environmental fields is provided.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
23
|
Li J, Zhang B, Dong B, Feng L. MOF-derived transition metal-based catalysts for the electrochemical reduction of CO 2 to CO: a mini review. Chem Commun (Camb) 2023; 59:3523-3535. [PMID: 36847576 DOI: 10.1039/d3cc00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The excessive emission of CO2 derived from the consumption of fossil fuels has caused severe energy and environmental crises. The electrochemical reduction of CO2 into value-added products such as CO not only reduces the CO2 concentration in the atmosphere but also promotes sustainable development in chemical engineering. Thus, tremendous work has been devoted to developing highly efficient catalysts for the selective CO2 reduction reaction (CO2RR). Recently, MOF-derived transition metal-based catalysts have shown great potential for the CO2RR due to their various compositions, adjustable structures, competitive ability, and acceptable cost. Herein, based on our work, a mini-review is proposed for an MOF-derived transition metal-based catalyst for the electrochemical reduction of CO2 to CO. The catalytic mechanism of the CO2RR was first introduced, and then we summarized and analyzed the MOF-derived transition metal-based catalysts in terms of MOF-derived single atomic metal-based catalysts and MOF-derived metal nanoparticle-based catalysts. Finally, we present the challenges and perspectives for the subject topic. Hopefully, this review could be helpful and instructive for the design and application of MOF-derived transition metal-based catalysts for the selective CO2RR to CO.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Baoxia Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
24
|
Zhao X, Huang F, Li D, Yan A, Zhang T, Zhao W, Gao Y, Zhang J. Nb, Se-codoped ZnIn 2S 4/NbSe 2composites with enhanced catalytic activity and photodegradation performance towards tetracycline. NANOTECHNOLOGY 2023; 34:205705. [PMID: 36780666 DOI: 10.1088/1361-6528/acbb7b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Low quantum efficiency and serious photogenerated carrier recombination have been urgent bottleneck problems for photocatalytic materials. Herein, we prepared Nb, Se-codoped ZnIn2S4/NbSe2composites through a facile solvothermal method. The synergetic effect of codoping and cocatalyst was investigated on the photodegradation performance towards tetracycline under visible-light irradiation. By adjusting the final composition, the comprehensive characterization revealed that the optimum degradation efficiency of NS/ZIS-1.6 catalyst arrived at 75% in 70 min, which was 5.8 times higher than that of pure ZnIn2S4. Deep analysis indicated that the enhanced photocatalytic performance could be attributed to higher light absorption, more efficient electron/hole separation, faster charge transport, and lower carrier recombination. This work may offer novel viewpoint for design of high-performance catalysts towards the visible-light-driven photodegradation system.
Collapse
Affiliation(s)
- Xianhui Zhao
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Fei Huang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Dengke Li
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Aihua Yan
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China
| | - Tongyang Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Wenxue Zhao
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Ye Gao
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Jixu Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| |
Collapse
|
25
|
Li Z, Ul Hassan Q, Zhang W, Zhu L, Gao J, Shi X, Huang Y, Liu P, Zhu G. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3–δ: Experimental and theoretical verification. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
26
|
Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
27
|
Li X, Xiong J, Tang Z, He W, Wang Y, Wang X, Zhao Z, Wei Y. Recent Progress in Metal Oxide-Based Photocatalysts for CO 2 Reduction to Solar Fuels: A Review. Molecules 2023; 28:molecules28041653. [PMID: 36838641 PMCID: PMC9961657 DOI: 10.3390/molecules28041653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
One of the challenges in developing practical CO2 photoconversion catalysts is the design of materials with a low cost, high activity and good stability. In this paper, excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxide materials, which are cost-effective, long-lasting, and easy to fabricate, are evaluated. The characteristics of the nanohybrid catalysts depend greatly on their architecture and design. Thus, we focus on outstanding materials that offer effective and practical solutions. Strategies to improve CO2 conversion efficiency are summarized, including heterojunction, ion doping, defects, sensitization and morphology control, which can inspire the future improvement in photochemistry. The capacity of CO2 adsorption is also pivotal, which varies with the morphological and electronic structures. Forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional- and three-dimensional-ordered macroporous, respectively) are involved. Particularly, the several advantages of the 3DOM material make it an excellent candidate material for CO2 conversion. Hence, we explain its preparation method. Based on the discussion, new insights and prospects for designing high-efficient metallic oxide photocatalysts to reduce CO2 emissions are presented.
Collapse
Affiliation(s)
- Xuanzhen Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
| | - Zhiling Tang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Wenjie He
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yingli Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Xiong Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
- Correspondence:
| |
Collapse
|
28
|
Thi Huong Giang N, Tan Thinh N, Duy Hai N, Tan Loc P, Ngoc Anh Thu T, Hong Phi Loan N, Minh Quang D, Duc Anh L, Nguyen Thien Truong An V, Thanh Phong M, Huu Hieu N. Application of TiO2 nanoparticles with natural chlorophyll as the catalyst for visible light photocatalytic degradation of methyl orange and antibacterial. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Chen Z, Zhu X, Xiong J, Wen Z, Cheng G. A p-n Junction by Coupling Amine-Enriched Brookite-TiO 2 Nanorods with Cu xS Nanoparticles for Improved Photocatalytic CO 2 Reduction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:960. [PMID: 36769965 PMCID: PMC9918986 DOI: 10.3390/ma16030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is a promising technology for reaching the aim of "carbon peaking and carbon neutrality", and it is crucial to design efficient photocatalysts with a rational surface and interface tailoring. Considering that amine modification on the surface of the photocatalyst could offer a favorable impact on the adsorption and activation of CO2, in this work, amine-modified brookite TiO2 nanorods (NH2-B-TiO2) coupled with CuxS (NH2-B-TiO2-CuxS) were effectively fabricated via a facile refluxing method. The formation of a p-n junction at the interface between the NH2-B-TiO2 and the CuxS could facilitate the separation and transfer of photogenerated carriers. Consequently, under light irradiation for 4 h, when the CuxS content is 16%, the maximum performance for conversion of CO2 to CH4 reaches at a rate of 3.34 μmol g-1 h-1 in the NH2-B-TiO2-CuxS composite, which is approximately 4 times greater than that of pure NH2-B-TiO2. It is hoped that this work could deliver an approach to construct an amine-enriched p-n junction for efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Zhangjing Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhipan Wen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| |
Collapse
|
30
|
Tang R, Wang H, Dong X, Zhang S, Zhang L, Dong F. A ball milling method for highly dispersed Ni atoms on g-C3N4 to boost CO2 photoreduction. J Colloid Interface Sci 2023; 630:290-300. [DOI: 10.1016/j.jcis.2022.10.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
31
|
Li CF, Guo RT, Wu T, Pan WG. Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO 2. NANOSCALE 2022; 14:16033-16064. [PMID: 36300511 DOI: 10.1039/d2nr04063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reducing CO2 into value-added chemicals and fuels by artificial photosynthesis (photocatalysis and photoelectrocatalysis) is one of the considerable solutions to global environmental and energy issues. One-dimensional (1D) nanostructured catalysts (nanowires, nanorods, nanotubes and so on.) have attracted extensive attention due to their superior light-harvesting ability, co-catalyst loading capacity, and high carrier separation rate. This review analyzed the basic principle of the photo(electro)catalytic CO2 reduction reaction (CO2 RR) briefly. The preparation methods and properties of 1D nanostructured catalysts are introduced. Next, the applications of 1D nanostructured catalysts in the field of photo(electro)catalytic CO2 RR are introduced in detail. In particular, we introduced the design of composite catalysts with 1D nanostructures, for example loading 0D, 1D, 2D, and 3D materials on a 1D nanostructured semiconductor to construct a heterojunction to optimize the photo-response range, carrier separation and transport efficiency, CO2 adsorption and activation capacity, and stability of the catalyst. Finally, the development prospects of 1D nanostructured catalysts are discussed and summarized. This review can provide guidance for the rational design of advanced catalysts for photo(electro)catalytic CO2 RR.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People's Republic of China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People's Republic of China
| |
Collapse
|
32
|
Recent advances in 1D nanostructured catalysts for photothermal and photocatalytic reduction of CO2. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Li S, Xiong J, Lu M, Li W, Cheng G. Fabrication Approach Impact on Solar-to-Hydrogen Evolution of Protonic Titanate-Derived Nano-TiO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Mengjie Lu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003 PR China
| |
Collapse
|
34
|
Dai B, Zhao W, Huang H, Li S, Yang G, Wu H, Sun C, Leung DY. Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis. J Colloid Interface Sci 2022; 616:163-176. [DOI: 10.1016/j.jcis.2022.02.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
|
35
|
Elavarasan M, Yang W, Velmurugan S, Chen JN, Chang YT, Yang TCK, Yokoi T. In-situ infrared investigation of m-TiO2/α-Fe2O3 photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO2 to methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Zhu M, Zhang FJ, Wang Y. A Review on Preparation and Photocatalytic Hydrogen Evolution of Core-shell Cu2O Composites. NEW J CHEM 2022. [DOI: 10.1039/d2nj02633c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract:Due to the appropriate bandgap, Cu2O has been widely studied in the field of photocatalytic hydrogen evolution. The core-shell structure is used to design the photocatalytic semiconductor material, so that...
Collapse
|