1
|
Gu S, Zhao JX, Wang YZ, Chen L. Towards Sustainable and Fire-Safe Thermosets Using Phosphorus-Containing Covalent Adaptable Networks. Chempluschem 2024; 89:e202400341. [PMID: 38975963 DOI: 10.1002/cplu.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Dynamic covalent chemistry is a promising strategy for developing recyclable thermosets and their carbon fiber reinforced composites, in line with the goal of green and sustainable development. However, a significant challenge lies in balancing the dynamic reversibility and the desired service performances, such as thermal, mechanical properties, and flame retardancy. It has hindered the broader application of dynamic materials beyond the initial proof of concept. This concept provides an overview of the current state of research on phosphorus-containing covalent adaptable networks (CANs), highlighting key designing and regulating principles for tailoring comprehensive properties including flame retardancy, mechanical and thermal properties, as well as dynamic behaviours such as malleability, reprocessability and degradability. Finally, new frontiers and opportunities in developing high-performance sustainable CANs-based thermosets and their carbon fiber composites for structural engineering applications are prospected.
Collapse
Affiliation(s)
- Song Gu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jia-Xin Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Zhang Y, Yan H, Yu R, Yuan J, Yang K, Liu R, He Y, Feng W, Tian W. Hyperbranched Dynamic Crosslinking Networks Enable Degradable, Reconfigurable, and Multifunctional Epoxy Vitrimer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306350. [PMID: 37933980 PMCID: PMC10787098 DOI: 10.1002/advs.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Degradation and reprocessing of thermoset polymers have long been intractable challenges to meet a sustainable future. Star strategies via dynamic cross-linking hydrogen bonds and/or covalent bonds can afford reprocessable thermosets, but often at the cost of properties or even their functions. Herein, a simple strategy coined as hyperbranched dynamic crosslinking networks (HDCNs) toward in-practice engineering a petroleum-based epoxy thermoset into degradable, reconfigurable, and multifunctional vitrimer is provided. The special characteristics of HDCNs involve spatially topological crosslinks for solvent adaption and multi-dynamic linkages for reversible behaviors. The resulting vitrimer displays mild room-temperature degradation to dimethylacetamide and can realize the cycling of carbon fiber and epoxy powder from composite. Besides, they have supra toughness and high flexural modulus, high transparency as well as fire-retardancy surpassing their original thermoset. Notably, it is noted in a chance-following that ethanol molecule can induce the reconstruction of vitrimer network by ester-exchange, converting a stiff vitrimer into elastomeric feature, and such material records an ultrahigh modulus (5.45 GPa) at -150 °C for their ultralow-temperature condition uses. This is shaping up to be a potentially sustainable advanced material to address the post-consumer thermoset waste, and also provide a newly crosslinked mode for the designs of high-performance polymer.
Collapse
Affiliation(s)
- Yuanbo Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ruizhi Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Junshan Yuan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kaiming Yang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Rui Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
3
|
Gu S, Xiao YF, Tan SH, Liu BW, Guo DM, Wang YZ, Chen L. Neighboring Molecular Engineering in Diels-Alder Chemistry Enabling Easily Recyclable Carbon Fiber Reinforced Composites. Angew Chem Int Ed Engl 2023:e202312638. [PMID: 37759361 DOI: 10.1002/anie.202312638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Although a variety of dynamic covalent bonds have been successfully used in the development of diverse sustainable thermosetting polymers and their composites, solving the trade-off between recovery efficiency and comprehensive properties is still a major challenge. Herein, a "one-stone-two-birds" strategy of lower rotational energy barrier (Er ) phosphate-derived Diels-Alder (DA) cycloadditions was proposed for easily recyclable carbon fiber (CF)-reinforced epoxy resins (EPs) composites. In such a strategy, the phosphate spacer with lower Er accelerated the segmental mobility and dynamic DA exchange reaction for network rearrangement to achieve high-efficiency repairing, reprocessing of the EPs matrix and its composites and rapid nondestructive recycling of CF; meanwhile, incorporating phosphorus-based units especially reduced their fire hazards. The resulting materials simultaneously showed excellent thermal/mechanical properties, superb fire safety and facile recyclability, realizing the concept of recycling for high-performance thermosetting polymers and composites. This strategy is of great significance for understanding and enriching the molecular connotation of DA chemistry, making it potentially applicable to the design and development of a wide range of dynamic covalent adaptable materials toward practical cutting-edge-tech applications.
Collapse
Affiliation(s)
- Song Gu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan-Fang Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shi-Huan Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - De-Ming Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|