1
|
Xu Z, Geng T, Du J, Zuo Y, Hu X, Liu L, Shi Z, Huang H. Visible-light-mediated radical difunctionalization of alkenes with aromatic aldehydes. Org Biomol Chem 2025. [PMID: 39957547 DOI: 10.1039/d4ob02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We have developed a visible-light-mediated three-component tandem reaction of aromatic aldehydes with acrylates using a Hantzsch ester as the hydrogen atom transfer reagent, generating diethyl pentanedioate products in a one-pot synthesis. The reaction facilitates direct formation of acyl groups from the corresponding aldehydes, which are subsequently coupled successively to two molecules of acrylate in a Giese addition.
Collapse
Affiliation(s)
- Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Tao Geng
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoxiao Hu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Lin Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Zhang Y, Zhou G, Liu S, Shen X. Radical Brook rearrangement: past, present, and future. Chem Soc Rev 2025; 54:1870-1904. [PMID: 39835385 DOI: 10.1039/d4cs01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Brook rearrangement has emerged as one of the most pivotal transformations in organic chemistry, with broad applications spanning organic synthesis, drug design, and materials science. Since its discovery in the 1950s, the anion-mediated Brook rearrangement has been extensively studied, laying the groundwork for the development of numerous innovative reactions. In contrast, the radical Brook rearrangement has garnered comparatively less attention, primarily due to the challenges associated with the controlled generation of alkoxyl radicals under mild conditions. However, recent advancements in visible-light catalysis and transition-metal catalysis have positioned the radical Brook rearrangement as a promising alternative synthetic strategy in organic synthesis. Despite these developments, significant limitations and challenges remain, warranting further investigation. This review provides an overview of the radical Brook rearrangement, tracing its development from past to present, and offers perspectives on future directions in the field to inspire the creation of novel synthetic tools based on this transformation.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Gang Zhou
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| |
Collapse
|
3
|
Choi YR, Kang S, Hwang J, An H, Hong KB. Trifluoromethylative and Pentafluoroethylative Heterofunctionalization (C-O, C-S, and C-N) of Alkenes Using Visible Light Photocatalysis. ACS OMEGA 2024; 9:47500-47505. [PMID: 39651094 PMCID: PMC11618445 DOI: 10.1021/acsomega.4c06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
A mild and general method for photoredox-catalyzed trifluoromethylative and pentafluoroethylative heterofunctionalization of alkenes is proposed. In this reaction, the Togni reagent serves as a CF3- or CF2CF3-radical source for the regioselective formation of the C-CF3 and C-CF2CF3 bonds from alkenes, and additional nucleophiles (O, S, N) provide C-O, C-S, and C-N bonds, respectively. These reactions provide a common gateway to access the fluoroalkylative heterofunctionalization of alkenes.
Collapse
Affiliation(s)
- Ye Rin Choi
- New
Drug Development Center (NDDC), Daegu-Gyeongbuk
Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Seongeun Kang
- New
Drug Development Center (NDDC), Daegu-Gyeongbuk
Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Junyeon Hwang
- New
Drug Development Center (NDDC), Daegu-Gyeongbuk
Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hongchan An
- New
Drug Development Center (NDDC), Daegu-Gyeongbuk
Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
- College
of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Ki Bum Hong
- New
Drug Development Center (NDDC), Daegu-Gyeongbuk
Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| |
Collapse
|
4
|
Zhou P, Ding L, Liu Y, Song H, Wang Q. Iron-Catalyzed Electrophotochemical α-Functionalization of a Silylcyclobutanol. Org Lett 2024; 26:7094-7099. [PMID: 39150853 DOI: 10.1021/acs.orglett.4c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Four-membered ring structure is important in organic chemistry, and selective cleavage and functionalization of these strained rings are of great interest. However, direct α-functionalization of cyclobutanols is rarely reported because of the high O-H bond dissociation energy and the occurrence of β-scission of C-C bonds in these alcohols. Recently, transition-metal catalysis has facilitated alkoxy radical generation. Herein, we report a method for electrophotochemical α-functionalization of a silylcyclobutanol via visible-light-induced LMCT reactions of M-alkoxy complexes. Introduction of the silyl group into the cyclobutanol structure favored fast [1,2]-silyl transfer over ring opening, thus allowing the generation of α-functionalized products.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ling Ding
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Song H, Zhang X, Chen G, He X, Lian Z. Copper-Catalyzed 1,4-Trifluoromethylthio-Arylsulfonylation of 1,3-Enynes via the Insertion of Sulfur Dioxide. Org Lett 2023; 25:5916-5921. [PMID: 37498155 DOI: 10.1021/acs.orglett.3c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A copper-catalyzed trifluoromethylthio-arylsulfonylation between 1,3-enynes, AgSCF3, aryldiazonium tetrafluoroborates, and SO2 (from SOgen) is presented, which could introduce sulfone, SCF3, and allene moieties into one molecule simultaneously. This strategy features mild reaction conditions, good substrate compatibility, and excellent regioselectivity. The products obtained have the potential for further conversion into other valuable compounds. Initial investigations into the reaction mechanism suggest that it may proceed via a radical pathway. Notably, SOgen was proven as a uniquely effective SO2 surrogate in this transformation.
Collapse
Affiliation(s)
- Hongzhuo Song
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gang Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Cascade cyclization of alkene-tethered acylsilanes and allylic sulfones enabled by unproductive energy transfer photocatalysis. Nat Commun 2022; 13:6111. [PMID: 36245017 PMCID: PMC9573877 DOI: 10.1038/s41467-022-33730-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Developing photo-induced cascade cyclization of alkene-tethered acylsilanes is challenging, because acylsilanes are unstable under light irradiation. Herein, we report that the energy transfer from excited acylsilanes to a photocatalyst that possesses lower triplet energy can inhibit the undesired decomposition of acylsilanes. With neutral Eosin Y as the photocatalyst, an efficient synthesis of cyclopentanol derivatives is achieved with alkene-tethered acylsilanes and allylic sulfones. The reaction shows broad substrate scope and the synthetic potential of this transformation is highlighted by the construction of cyclopentanol derivatives which contain fused-ring or bridged-ring. Acylsilanes decompose under light irradiation, and this limits their use in light-induced organic transformations. Here the authors report a strategy to inhibit the light-induced decomposition of acylsilanes, enabling the photochemical synthesis of cyclopentanol derivatives from alkene-tethered acylsilanes and allylic sulfones.
Collapse
|
7
|
Zhang Y, Chen J, Huang H. Radical Brook Rearrangements: Concept and Recent Developments. Angew Chem Int Ed Engl 2022; 61:e202205671. [DOI: 10.1002/anie.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Jun‐Jie Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Huan‐Ming Huang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
8
|
Liu F, Lv L, Ma Y, Li Z. Copper‐Catalyzed Radical Difluoromethylation‐Peroxidation of Alkenes: Synthesis of β‐Difluoromethyl Peroxides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fan Liu
- Renmin University of China Chemistry CHINA
| | - Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
9
|
Zhang Y, Chen JJ, Huang HM. Radical Brook Rearrangement: Concept and Recent Developments. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Zhang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Jun-Jie Chen
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Huan-Ming Huang
- ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia RoadPudong 201210 Shanghai CHINA
| |
Collapse
|
10
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes-Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022; 61:e202202175. [PMID: 35415937 DOI: 10.1002/anie.202202175] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Stereoselective cyclopropanation reaction of alkenes is usually achieved by metal complexes via singlet-metal-carbene intermediates. However, previous transition-metal-catalyzed cyclopropanation of alkenes with acylsilanes afforded low diastereoselectivity. Herein, we report the first visible-light-induced transition-metal-free cyclopropanation reaction of terminal alkenes with trifluoroacetylsilanes and difluoroacetylsilanes. Both aromatic and aliphatic alkenes as well as electron-deficient alkenes are suitable substrates for the highly cis-selective [2+1] cyclization reaction. A combination of experimental and computational studies identified triplet carbenes as being key intermediates in this transformation. The gram scale reaction and late-stage functionalization demonstrated the synthetic potential of this strategy.
Collapse
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xingxing Gong
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
11
|
Zhou G, Shen X. Visible-Light-Induced Organocatalyzed [2+1] Cyclization of Alkynes and Trifluoroacetylsilanes. Synlett 2022. [DOI: 10.1055/a-1840-5199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The synthesis of common cyclopropenes has been widely studied, but the synthesis of cyclopropenols is a significant challenge. Herein, we highlight our recent work on the synthesis of trifluoromethylated cyclopropenols through [2+1] cycloaddition reaction between alkynes and trifluoroacetylsilanes under visible-light-induced organocatalysis. The novel amphiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes can react effectively with both activated and unactivated alkynes. Broad substrate scope and good functional group tolerance have been achieved. Besides, the synthetic potential of this reaction was highlighted by a gram-scale reaction and the one-pot diastereoselective synthesis of trifluoromethylated cyclopropanols.
Collapse
|
12
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes‐Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Gang Zhou
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xingxing Gong
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiao Shen
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| |
Collapse
|
13
|
He X, Zhao Y, Zhang Z, Shen X. Tuning the Reactivity of Alkoxyl Radicals from Cyclization to 1,2-Silyl Transfer: Stereoselective Synthesis of β-Substituted Cycloalcohols. Org Lett 2022; 24:1991-1995. [DOI: 10.1021/acs.orglett.2c00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xingyi He
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yunlong Zhao
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zeguo Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|