1
|
Zhu SS, Lv H, Yuan X, Guo K. Photocatalytic Tricyclization of Enediynes for the Synthesis of Chromenoquinolines in Continuous Flow. Org Lett 2024; 26:8910-8915. [PMID: 39373972 DOI: 10.1021/acs.orglett.4c03359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A photocatalyzed radical-initiated tricyclization of enediynes was developed to synthesize a range of hitherto unknown sulfonated chromenoquinolines with moderate to excellent yields under continuous operational conditions. The reaction mechanism involves a complex series of steps including alkyl radical capture by sulfur dioxide (SO2), radical addition, 6-exo-dig/6-exo-dig/6-endo-trig tricyclization, and single electron transfer (SET). This cascade of reactions results in the direct formation of a pentacyclic framework structure, along with the creation of up to three new rings and five chemical bonds in a single step. This photocatalytic protocol exhibits a diverse substrate scope, remarkable tolerance to functional groups, and scalable adaptability.
Collapse
Affiliation(s)
- Shan-Shan Zhu
- Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hao Lv
- Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Yuan
- Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Zhong LJ, Fan JH, Chen P, Huang PF, Xiong BQ, Tang KW, Liu Y. Recent advances in ring-opening of cyclobutanone oximes for capturing SO 2, CO or O 2via a radical process. Org Biomol Chem 2023; 22:10-24. [PMID: 38018531 DOI: 10.1039/d3ob01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO2, CO or O2 to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest. In this updated report, the strategies for trapping SO2, CO or O2via iminyl-radical-triggered ring-opening of cyclobutanone oximes are summarized.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
3
|
Li MF, Chen LQ, Wang JY, Tu MS, Hao WJ, Jiang B. Lewis Acid-Catalyzed Remote Site-Selective Ring Deconstruction of Cyclobuteno[ a]naphthalene-4-ones to Access Unsymmetric 1,1-Diarylated Olefins. J Org Chem 2023; 88:3615-3625. [PMID: 36855323 DOI: 10.1021/acs.joc.2c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A catalytic site-selective ring deconstruction of cyclobuteno[a]naphthalene-4-ones with alcohols is reported, enabling the direct production of a wide range of unsymmetric 1,1-diarylated olefins with good yields and complete regioselectivity. The late-stage application of these resulting terminal olefins demonstrates great possibilities to apply this strategy to complex molecules. The protocol features good functional group compatibility, broad substrate scope, and controllable site selectivity.
Collapse
Affiliation(s)
- Meng-Fan Li
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Ling-Qi Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia-Yin Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Man-Su Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
4
|
Recent Advances in Molecule Synthesis Involving C-C Bond Cleavage of Ketoxime Esters. Molecules 2023; 28:molecules28062667. [PMID: 36985637 PMCID: PMC10058904 DOI: 10.3390/molecules28062667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The synthetic strategies of oxime derivatives participating in radical-type reactions have been rapidly developed in the last few decades. Among them, the N–O bond cleavage of oxime esters leading to formation of nitrogen-centered radicals triggers adjacent C–C bond cleavage to produce carbon-centered free radicals, which has been virtually used in organic synthesis in recent years. Herein, we summarized the radical reactions involving oxime N–O bond and C–C bond cleavage through this special reaction form, including those from acyl oxime ester derivatives and cyclic ketoxime ester derivatives. These contents were systematically classified according to different reaction types. In this review, the free radical reactions involving acyl oxime esters and cyclic ketoxime esters after 2021 were included, with emphasis on the substrate scope and reaction mechanism.
Collapse
|
5
|
Visible-light-induced selective alkylsulfonylation of unactivated alkenes via remote heteroaryl migrations. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
6
|
Zou T, He Y, Liu R, Zhang Y, Wei S, Lu J, Wang J, Wang L, Fu Q, Yi D. Photoredox-neutral ring-opening pyridylation of cyclic oximes via phosphoranyl radical-mediated N-O/C-C bond cleavages and sequential radical-radical coupling. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
He FS, Zhang C, Jiang M, Lou L, Wu J, Ye S. Access to chiral β-sulfonyl carbonyl compounds via photoinduced organocatalytic asymmetric radical sulfonylation with sulfur dioxide. Chem Sci 2022; 13:8834-8839. [PMID: 35975150 PMCID: PMC9350669 DOI: 10.1039/d2sc02497g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023] Open
Abstract
An organocatalytic enantioselective radical reaction of potassium alkyltrifluoroborates, DABCO·(SO2)2 and α,β-unsaturated carbonyl compounds under photoinduced conditions is developed, which provides an efficient pathway for the synthesis of chiral β-sulfonyl carbonyl compounds in good yields with excellent enantioselectivity (up to 96% ee). Aside from α,β-unsaturated carbonyl compounds with auxiliary groups, common chalcone substrates are also well compatible with this organocatalytic system. This method proceeds through an organocatalytic enantioselective radical sulfonylation under photoinduced conditions, and represents a rare example of asymmetric transformation involving sulfur dioxide insertion.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Chun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Minghui Jiang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Lujun Lou
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|