1
|
Liu X, Sun N, Wu Z, Luo Z, Zhang A, Wang L. Advanced development of finite element analysis for electrochemical catalytic reactions. Chem Commun (Camb) 2025; 61:5212-5227. [PMID: 40091809 DOI: 10.1039/d5cc00230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of robust simulation techniques is crucial for elucidating electrochemical catalytic mechanisms and can even provide guidance for the tailored design and regulation of highly efficient catalysts. Finite element analysis (FEA), as a powerful numerical simulation tool, can effectively simulate and analyze the sophisticated processes involved in electrochemical catalytic reactions and unveil the underlying microscopic mechanisms. By employing FEA, researchers can gain better insights into reaction kinetics and transport processes, optimize electrode design, and predict electrochemical performance under various reaction conditions. Consequently, the application of FEA in electrochemical catalytic reactions has emerged as a critical area of current research and a summary of the advanced development of FEA for electrochemical catalytic reactions is urgently required. This review focuses on exploring the applications of FEA in investigating the crystal structure effect, tip effect, multi-shell effect, porous structure effect, and mass transfer phenomena in electrochemical reactions. Particularly emphasized are its applications in the fields of CO2 reduction, oxygen evolution reaction, and nitrogen reduction reaction. Finally, the challenges encountered by this research field are discussed, along with future directions for further advancement. We aim to provide comprehensive theoretical and practical guidance on FEA methods for researchers in the field of electrochemical catalysis, thereby fostering the advancement and wider implementation of FEA within this domain.
Collapse
Affiliation(s)
- Xianya Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Ning Sun
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Zefei Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
2
|
Li Q, Han Z, Song X, Pan YT, Geng Z, Vahabi H, Realinho V, Yang R. Enhancing char formation of flame retardant epoxy composites: Onigiri-like ZIF-67 modification with carboxymethyl β-cyclodextrin crosslinking. Carbohydr Polym 2024; 333:121980. [PMID: 38494206 DOI: 10.1016/j.carbpol.2024.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
To enhance char formation of flame retardant epoxy (EP) composites, carboxymethyl β-cyclodextrin (CM-β-CD) is employed as an etchant for or ZIF-67 derivatives. In the early stage, etching plays a dominant role. The mismatch in size between CM-β-CD opening and ZIF-67 pore leads to the stacking of carboxyl cobalt complexes on the shell. When the reaction time is prolonged, crosslinking occurs between carboxyl and hydroxyl groups. Crosslinked CM-β-CD weakens and eventually stops the etching process. Triethyl phosphate (TEP), an additive to improve flame retardancy, is also absorbed on the shell in this one-pot synthesis. Herin, the synthesis of metal-organic framework (MOF) derivatives can impart multiple functions to MOF. This novel nanohybrid significantly improved flame retardancy of EP composites with only 2.0 wt% loading. The peak heat release rate (pHRR) and total smoke production (TSP) were reduced by 54.8 and 46.9%, respectively. The integrated multi-element system resulted in an expanded and reinforced char layer. This study proposes a simple and precise method for controlling the structure of MOF-carbohydrate hybrids through competition between chemical reactions.
Collapse
Affiliation(s)
- Qianlong Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhengde Han
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoning Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zhishuai Geng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vera Realinho
- Poly2 Group, Department of Materials Science and Engineering, School of Industrial, Aerospace and Audiovisual Engineering of Terrassa, Universitat Politècnica de Catalunya (UPC BarcelonaTech), C/de Colom, 11, 08222 Terrassa, Spain
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
3
|
Huang S, Ye T, Liu X, Cong X, Peng K, Liu L, Jiang Y, Chen Q, Hu Z, Zhang J. Amorphous and defective Co-P-O@NC ball-in-ball hollow structure for highly efficient electrocatalytic overall water splitting. J Colloid Interface Sci 2023; 649:1047-1059. [PMID: 37421805 DOI: 10.1016/j.jcis.2023.06.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023]
Abstract
Electrochemical water splitting using hollow and defect-rich catalysts has emerged as a promising strategy for efficient hydrogen production. However, the rational design and controllable synthesis of such catalysts with intricate morphology and composition present significant challenges. Herein, we propose a template-engaged approach to fabricate a novel ball-in-ball hollow structure of Co-P-O@N-doped carbon with abundant oxygen vacancies. The synthesis process involves the preparation of uniform cobalt-glycerate (Co-gly) polymer microspheres as precursors, followed by surface coating with ZIF-67 layer, adjustable chemical etching by phytic acid, and controllable pyrolysis at high temperature. The resulting ball-in-ball structure offers a large number of accessible active sites and high redox reaction centers, facilitating efficient charge transport, mass transfer, and gas evolution, which are beneficial for the acceleration of electrocatalytic reaction. Additionally, density functional theory (DFT) calculations indicate that the incorporation of oxygen and the presence of Co-P dangling bonds in CoP significantly enhance the adsorption of oxygenated species, leading to improved intrinsic electroactivity at the single-site level. As a sequence, the titled catalyst exhibits remarkable electrocatalytic activity and stability for water splitting in alkaline media. Notably, it only requires a low overpotential of 283 mV to achieve a current density of 10 mA cm-2 for the oxygen evolution reaction. This work may provide some new insights into the design of complex hollow structures of phosphides with abundant defects for energy conversion.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tong Ye
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiao Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiansheng Cong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kaimei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Libin Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qiaochuan Chen
- School of Computer Engineering and Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linkoping 58183, Sweden.
| | - Jiujun Zhang
- Institute for Sustainable Energy College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|