1
|
Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Nie L, Liao J, Zhou Q. Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis. Food Chem 2024; 459:140352. [PMID: 38991447 DOI: 10.1016/j.foodchem.2024.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 μg/L and had low limits of detection (0.013-0.018 μg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China..
| |
Collapse
|
2
|
Liu J, Wan Y, Wang H, Zhang Y, Xu M, Song X, Zhou W, Zhang J, Ma W, Huo P. Enhanced activation of peroxymonosulfate by ZIF-67/g-C 3N 4 S-scheme photocatalyst under visible light assistance for degradation of polyethylene terephthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124682. [PMID: 39111530 DOI: 10.1016/j.envpol.2024.124682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Photocatalyst-activated peroxymonosulfate (PMS) degradation of pollutants is already widely used for wastewater treatment under visible light. Polyethylene terephthalate (PET) is widely used in daily life, but waste plastics have an irreversible negative impact on the environment. In this paper, the ZIF-67/g-C3N4 S-scheme heterojunction catalyst was synthesized as a photocatalyst to achieve a good effect on PET degradation in coordination with PMS. The results indicated that PET could be degraded up to 60.63 ± 2.12 % under the combined effect of catalyst, PMS, and light. In this experiment, the influence of catalyst-to-plastic ratio, PMS concentration, aqueous pH, and inorganic anions on plastic degradation by the photocatalytic synergistic PMS system was discussed, and the excellent performance of this system for degrading PET was highlighted through a comparative test. Electron spin resonance (ESR) and free radical quenching experiments demonstrated that SO4•- contributes the largest amount to the PET degradation performance. Furthermore, results from gas chromatography and liquid chromatography-mass spectrometry (LC-MS) indicated that the plastic degradation products include CO, CH4, and organic small-molecule liquid fuels. Finally, a possible mechanism for the light/PMS system to degrade PET in water was suggested. This paper provides a feasible solution to treat waste microplastics in water.
Collapse
Affiliation(s)
- Jiejing Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yining Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Mengyang Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jisheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wei Ma
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, PR China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
3
|
Fan H, Li R, Chen Y, Zhang H, Zeng S, Ji W, Hu W, Yin S, Li Y, Liu GL, Huang L. Flexible nanoplasmonic sensor for multiplexed and rapid quantitative food safety analysis with a thousand-times sensitivity improvement. Biosens Bioelectron 2024; 248:115974. [PMID: 38171221 DOI: 10.1016/j.bios.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
The accumulation of trace amounts of certain small molecules in food poses considerable human health challenges, including the potential for carcinogenesis and mutagenesis. Here, an ultrasensitive gold-platinum nanoflower-coupled metasurface plasmon resonance (MetaSPR) (APNMSPR) biosensor, based on a competitive immunoassay, was developed for the multiplexed and rapid quantitative analysis of trace small molecules in eggs, offering timely monitoring of food safety. This one-step biosensor can be integrated into either a newly designed detachable high-throughput MetaSPR chip-strip plate device or a standard 96-well plate for multiplexed small-molecule detection within a single egg. The limits of detection were 0.81, 1.12, and 1.74 ppt for florfenicol, fipronil, and enrofloxacin, respectively, demonstrating up to 1000-fold increased sensitivity and a 15-fold reduction in analysis time compared with those of traditional methods. The results obtained using the APNMSPR biosensor showed a strong correlation with those obtained using liquid chromatography-tandem mass spectrometry. The APNMSPR biosensor holds immense promise for the multiplexed, highly sensitive, and rapid quantitative analysis of small molecules for applications in food safety control, early diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Hongli Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Youqian Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huazhi Zhang
- Liangzhun (Wuhan) Industrial Co. Ltd., Wuhan, Hubei, 430073, China
| | - Shaoqi Zeng
- Liangzhun (Wuhan) Industrial Co. Ltd., Wuhan, Hubei, 430073, China
| | - Weihao Ji
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, 430075, China; Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, Hubei, 430075, China
| | - Wenjun Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| | - Gang L Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Liangzhun (Wuhan) Industrial Co. Ltd., Wuhan, Hubei, 430073, China.
| |
Collapse
|
4
|
Kaur N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024; 267:125114. [PMID: 37683321 DOI: 10.1016/j.talanta.2023.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The burning of an agro waste residue causes air pollution, global warming and lethal effects. To overcome these obstacles, the transformation of agro waste into nanoparticles (NPs) reduces industrial expenses and amplifies environmental sustainability. The concept of green nanotechnology is considered as a versatile tool for the development of valuable products. Although a plethora of literature on the NPs is available, but, still scientists are exploring to design more novel particles possessing unique shape and properties. So, this review basically summarises about the synthesis, characterizations, advantages and outcomes of the various agro waste derived NPs.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India.
| |
Collapse
|
5
|
Wan Y, Wang H, Liu J, Liu X, Song X, Zhou W, Zhang J, Huo P. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO 2 heterojunction photocatalyst activated peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131375. [PMID: 37030225 DOI: 10.1016/j.jhazmat.2023.131375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Waste plastics have posed enormous to the environment, but their recycling, especially polyethylene terephthalate plastics, was still a huge challenge. Here, CdS/CeO2 was used as the photocatalyst to promote the degradation of PET-12 plastics by activating peroxymonosulfate (PMS) synergistic photocatalytic system. The results showed that 10 % CdS/CeO2 had the best performance under the illumination condition, and the weight loss rate of PET-12 could reach 93.92 % after adding 3 mM PMS. The effects of important parameters (PMS dose and co-existing anions) on PET-12 degradation were systematically studied, and the excellent performance of the photocatalytic-activated PMS system was verified by comparison experiments. SO4•- contributed the most to the degradation performance of PET-12 plastics, which was demonstrated by electron paramagnetic resonance (EPR) and free radical quenching experiments. Furthermore, the results of GC showed that the gas products including CO, and CH4. This indicated that the mineralized products could be further reduced to hydrocarbon fuel under the action of the photocatalyst. This job supplied a new idea for the photocatalytic treatment of waste microplastics in the water, which will help recycle waste plastics and recycle carbon resources.
Collapse
Affiliation(s)
- Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiejing Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jisheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengewei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Li N, Ye J, Dai H, Shao P, Liang L, Kong L, Yan B, Chen G, Duan X. A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation. WATER RESEARCH 2023; 235:119926. [PMID: 37004307 DOI: 10.1016/j.watres.2023.119926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•-, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•- and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, 330063 Nanchang, China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
| | - Lingchao Kong
- School of Environmental Science & Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China.
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, 300134 Tianjin, China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005 Adelaide, SA, Australia
| |
Collapse
|
7
|
Liu L, Li Y, Al-Huqail AA, Ali E, Alkhalifah T, Alturise F, Ali HE. Green synthesis of Fe 3O 4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. CHEMOSPHERE 2023; 334:138638. [PMID: 37100254 DOI: 10.1016/j.chemosphere.2023.138638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.
Collapse
Affiliation(s)
- Lisha Liu
- Chongqing Creation Vocational College, Chongqing, 402160, China
| | - Yuanhua Li
- Chongqing Creation Vocational College, Chongqing, 402160, China.
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
8
|
Zhao Z, Li Y, Zhou Y, Hou Y, Sun Z, Wang W, Gou J, Cheng X. Activation of sulfite by micron-scale iron-carbon composite for metronidazole degradation: Theoretical and experimental studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130873. [PMID: 36731316 DOI: 10.1016/j.jhazmat.2023.130873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, sulfite (S(Ⅳ)), as an alternative to persulfates, has played a crucial role in eliminating antibiotics in wastewater, so there is an urgent need to develop a cheap, environmentally friendly, and effective catalyst. Zero-valent iron (ZVI) has great potential for activated S(Ⅳ) removal of organic pollutants, but its reactivity in water is reduced due to passivation. In this study, a micron-scale iron-carbon composite(mZVI@C-800) prepared via high-temperature calcination was coupled with S(Ⅳ) to degrade metronidazole (MNZ). Under the optimized reaction conditions of mZVI@C-800 dosage of 0.2 g/L and S(Ⅳ) concentration of 0.1 g/L, the MNZ removal rate was up to 81.5 % in acidic and neutral environments. The surface chemical properties of the catalysts were characterized by different analytical techniques, and the corresponding catalytic mechanism was analyzed based on these analytical results. As a result, Fe2+ is the main active site, and ·OH and SO4·- were the dominant active species. The increase in efficiency was attributed to the introduction of carbon to enhance the corrosion of mZVI further releasing more Fe2+. Additionally proposed were the potential response mechanism, the degradation path, and the toxicity change rule. These results demonstrate that the catalytic breakdown of antibiotics in wastewater treatment can be accelerated by the use of the outstanding catalytic material mZVI@C-800.
Collapse
Affiliation(s)
- Zixuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yunhe Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yilong Hou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengyi Sun
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wenhao Wang
- Civil Engineering Department, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, PR China
| | - Jianfeng Gou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
9
|
A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022. [DOI: 10.3390/catal12101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, advanced oxidation process (AOPs) based on sulfate radical (SO4●−) and singlet oxygen (1O2) has attracted a lot of attention because of its characteristics of rapid reaction, efficient treatment, safety and stability, and easy operation. SO4●− and 1O2 mainly comes from the activation reaction of peroxymonosulfate (PMS) or persulfate (PS), which represent the oxidation reactions involving radicals and non-radicals, respectively. The degradation effects of target pollutants will be different due to the type of oxidant, reaction system, activation methods, operating conditions, and other factors. In this paper, according to the characteristics of PMS and PS, the activation methods and mechanisms in these oxidation processes, respectively dominated by SO4●− and 1O2, are systematically introduced. The research progress of PMS and PS activation for the degradation of organic pollutants in recent years is reviewed, and the existing problems and future research directions are pointed out. It is expected to provide ideas for further research and practical application of advanced oxidation processes dominated by SO4●− and 1O2.
Collapse
|