1
|
Zhang J, Li Y, Wang X, Zhao S, Du Q, Pi X, Jing Z, Jin Y. Polydopamine coating for enhanced electrostatic adsorption of methylene blue by multiwalled carbon nanotubes in alkaline environments. J Colloid Interface Sci 2024; 675:263-274. [PMID: 38970912 DOI: 10.1016/j.jcis.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The removal of dye molecules in alkaline environments is an issue that should receive increased attention. In this study, the interaction mechanism between polydopamine-modified multiwalled carbon nanotubes (P-MWCNTs) and multiwalled carbon nanotubes (MWCNTs) with the cationic dye methylene blue (MB) in alkaline environments was explained in depth by adsorption, spectroscopy, and density functional theory (DFT). The mechanism of action and dominant forces between the adsorbent and adsorbate were analyzed graphically by introducing energy decomposition analysis (EDA) and an independent gradient model (IGM) into the DFT calculations. In addition, the force distribution was investigated through an isosurface. Moreover, batch adsorption studies were conducted to evaluate the performance of MWCNTs and P-MWCNTs for MB removal in alkaline environments. The maximum MB adsorption capacities of the MWCNTs and P-MWCNTs in solution were 113.3 mg‧g-1 and 230.4 mg‧g-1, respectively, at pH 9. The IGM and EDA showed that the better adsorption capacity of the P-MWCNTs originated from the enhancement of the electrostatic effect by the proton dissociation of polydopamine. Moreover, the adsorption of MB by MWCNTs and P-MWCNTs in alkaline environments was governed by dispersion and electrostatic effects, respectively. Through this study, it is hoped that progress will be made in the use of DFT to explore the mechanism of adsorbent-adsorbate interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
2
|
Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, Chen K, Du Q, Pi X, Wang Y, Jing Z, Jin Y. Efficient adsorption of methylene blue in water by nitro-functionalized metal-organic skeleton‑calcium alginate composite aerogel. Int J Biol Macromol 2023; 253:126458. [PMID: 37619681 DOI: 10.1016/j.ijbiomac.2023.126458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
This paper presents the first investigation of the adsorption performance of methylene blue by the nitro-functionalized metal-organic framework (MIL-88B-NO2). MIL-88B-NO2 has a specific surface area of 836.0 m2/g, which is 109.8 % higher than MIL-88B. The maximum adsorption capacity of methylene blue is 383.6 mg/g, which is 68.2 % higher than that of MIL-88B. This phenomenon can be attributed to the great increase in specific surface area and the introduction of nitro-functional groups. However, its microcrystalline nature makes it difficult to remove in practical applications and quickly causes secondary pollution. Therefore, the composite of MIL-88B-NO2 and calcium alginate (CA) to form aerogel maintains the inherent properties of the two materials and makes it easy to recycle. The utmost adsorption capability of MIL-88B-NO2/CA-2 aerogel is 721.0 mg/g. Compared with MIL-88B-NO2, the adsorption performance of MIL-88B-NO2/CA-2 aerogel is further improved by 88.0 %. The higher adsorption capacity of the adsorbent may be due to the synergistic interplay of electrostatic attraction, π-π conjugation, hydrogen bonding, metal coordination effect, and physicochemical properties. Also, MIL-88B-NO2/CA-2 aerogel has good recyclability, indicating that it has broad application prospects in the removal of positive dyes in contaminated water.
Collapse
Affiliation(s)
- Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
3
|
Wang S, Wu L, Wang L, Zhou J, Ma H, Chen D. Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4966. [PMID: 37512241 PMCID: PMC10381690 DOI: 10.3390/ma16144966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The environment has been heavily contaminated with tetracycline (TC) due to its excessive use; however, activated carbon possessing well-developed pores can effectively adsorb TC. This study synthesized pinecone-derived activated carbon (PAC) with high specific surface area (1744.659 cm2/g, 1688.427 cm2/g) and high adsorption properties (840.62 mg/g, 827.33 mg/g) via hydrothermal pretreatment methods utilizing pinecones as precursors. The results showed that PAC treated with 6% KOH solution had excellent adsorption properties. It is found that the adsorption process accords with the PSO model, and a large amount of C=C in PAC provides the carrier for π-πEDA interaction. The results of characterization and the isothermal model show that TC plays a key role in the adsorption process of PAC. It is concluded that the adsorption process of TC on PAC prepared by hydrothermal pretreatment is mainly pore filling and π-πEDA interaction, which makes it a promising adsorbent for TC adsorption.
Collapse
Affiliation(s)
- Shouqi Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linkai Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liangcai Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianbin Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huanhuan Ma
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dengyu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Li J, Cui Y, Zhang L. C60 adsorption on defective Si (1 0 0) surface having one missed dimer from atomic simulations at electrical level. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
5
|
Abdollahi SA, Ranjbar SF. Modeling the CO 2 separation capability of poly(4-methyl-1-pentane) membrane modified with different nanoparticles by artificial neural networks. Sci Rep 2023; 13:8812. [PMID: 37258709 PMCID: PMC10232494 DOI: 10.1038/s41598-023-36071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
Membranes are a potential technology to reduce energy consumption as well as environmental challenges considering the separation processes. A new class of this technology, namely mixed matrix membrane (MMM) can be fabricated by dispersing solid substances in a polymeric medium. In this way, the poly(4-methyl-1-pentene)-based MMMs have attracted great attention to capturing carbon dioxide (CO2), which is an environmental pollutant with a greenhouse effect. The CO2 permeability in different MMMs constituted of poly(4-methyl-1-pentene) (PMP) and nanoparticles was comprehensively analyzed from the experimental point of view. In addition, a straightforward mathematical model is necessary to compute the CO2 permeability before constructing the related PMP-based separation process. Hence, the current study employs multilayer perceptron artificial neural networks (MLP-ANN) to relate the CO2 permeability in PMP/nanoparticle MMMs to the membrane composition (additive type and dose) and pressure. Accordingly, the effect of these independent variables on CO2 permeability in PMP-based membranes is explored using multiple linear regression analysis. It was figured out that the CO2 permeability has a direct relationship with all independent variables, while the nanoparticle dose is the strongest one. The MLP-ANN structural features have efficiently demonstrated an appealing potential to achieve the highest accurate prediction for CO2 permeability. A two-layer MLP-ANN with the 3-8-1 topology trained by the Bayesian regulation algorithm is identified as the best model for the considered problem. This model simulates 112 experimentally measured CO2 permeability in PMP/ZnO, PMP/Al2O3, PMP/TiO2, and PMP/TiO2-NT with an excellent absolute average relative deviation (AARD) of lower than 5.5%, mean absolute error (MAE) of 6.87 and correlation coefficient (R) of higher than 0.99470. It was found that the mixed matrix membrane constituted of PMP and TiO2-NT (functionalized nanotube with titanium dioxide) is the best medium for CO2 separation.
Collapse
|
6
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
7
|
Taha RA, Shalabi AS, Assem MM, Soliman KA. DFT study of adsorbing SO 2, NO 2, and NH 3 gases based on pristine and carbon-doped Al 24N 24 nanocages. J Mol Model 2023; 29:140. [PMID: 37059860 PMCID: PMC10104930 DOI: 10.1007/s00894-023-05547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
The adsorption of SO2, NO2, and NH3 toxic gases on Al24N24 and Al24N23C nanocages was investigated by using density functional theory (DFT) calculations. The adsorption energies, frontier orbitals, charge transfer using natural bonding orbital (NBO) analysis, dipole moment, the partial density of states (PDOS), thermodynamic relationships, non-covalent interaction (NCI), and quantum theory of atoms in molecules (QTAIM) were considered. The results reveal that carbon-doped Al24N24 nanocage increases the adsorption energies for SO2 and NO2 gases while decreasing the adsorption energy of NH3 gas. The ΔG for all configurations were negative except the configurations A1 and G2 confirming the weak adsorption of these two complexes. In conclusion, Al24N24 and Al24N23C nanocages are in general promising adsorbents for the removal of SO2, NO2, and NH3 toxic gases. The Al24N24 and Al24N23C nanocages are ideal electronic materials.
Collapse
Affiliation(s)
- R A Taha
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - A S Shalabi
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - M M Assem
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - K A Soliman
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt.
| |
Collapse
|
8
|
Almohana AI, Almojil SF, Alali AF, Almoalimi KT. The elimination and extraction of organosulfur compounds from real water and soil samples using metal organic framework/graphene oxide as a novel and efficient nanocomposite. CHEMOSPHERE 2023; 319:137950. [PMID: 36702420 DOI: 10.1016/j.chemosphere.2023.137950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In the present work, an efficient metal organic framework/graphene oxide (MOF-801/GO) sorbent was fabricated and employed for the detection of organosulfur pesticides (OSPs) in real samples using gas chromatography-flame photometric detection (GC-FPD). The optimal extraction parameters for the suggested solid-phase extraction (SPE) include sorbent amount (60 mg), extraction solvent (acetonitrile) and extraction time (5 min). The linear dynamic ranges and detection limits for organosulfur pesticides (OSPs) samples under above extraction conditions were ranged from 0.5 to 300 μg L-1 and 0.1-1.1 μg L-1, respectively. Moreover, the proposed SPE/GC-FDP method was applied for the analysis of pesticides in different real environmental water and soil samples. The obtained recoveries of the analytes in were between 92.0 and 106.8% and relative standard deviation (RSD) values were lower than 9.2%. The application of the MOF-801/GO as a sorbent in dSPE of OSPs analytes showed to be reliable, fast and sensible methodology for pesticides monitoring in different environmental samples.
Collapse
Affiliation(s)
- Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia.
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Khaled Twfiq Almoalimi
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
9
|
Olejnik A, Kopec W, Maskowicz D, Sawczak M. Spin-Resolved Band Structure of Hoffman Clathrate [Fe(pz) 2Pt(CN) 4] as an Essential Tool to Predict Optical Spectra of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15848-15862. [PMID: 36929712 DOI: 10.1021/acsami.2c22626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paramount spin-crossover properties of the 3D-Hoffman metalorganic framework (MOF) [Fe(pz)2Pt(CN)4] are generally described on the basis of the ligand field theory, which provides adequate insight into theoretical and simulation analysis of spintronic complexes. However, the ligand field approximation does not take into account the 3D periodicity of the actual complex lattice and surface effects and therefore cannot predict a full-scale periodic structure without utilizing more advanced methods. Therefore, in this paper, the electronic properties of the exemplar MOF were analyzed from the band structure perspective in low-spin (LS) and high-spin (HS) states. The density-of-states spectra determined for both spin-up and spin-down electrons of Fe d6 orbitals indicate spin-orbital splitting and delocalization for HS due to spin polarization in the iron atom ligand field. Presence of the surface states in the real crystal causes a red shift of the metal-metal charge transfer (MMCT) and metal-ligand charge transfer (MLCT) peaks for both HS and LS states. The addition of residual water molecules and disorder among the pyrazine rings reveal additional influences on the positions of the pyrazine band and, therefore, on the absorption spectra of the crystal. The results show a magnification of the peak correlated with the MLCT in the HS state and a significant red shift of the LS characteristic absorption band. The presented approach involving band structure analysis delivers a more complete image of the electronic properties of the [Fe(pz)2Pt(CN)4] crystalline network and can be a landmark for insightful studies of other MOFs.
Collapse
Affiliation(s)
- Adrian Olejnik
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Wioletta Kopec
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Dominik Maskowicz
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Mirosław Sawczak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| |
Collapse
|
10
|
In silico investigation of metalophthalocyanine substituted in carbon nanocones (TM-PhCCNC, TM= Sc2+, Cr2+, Fe2+and Zn2+) as a promising sensor for detecting N2O gas involved in Covid-19. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Effects of Ge, Si, and B doping on the adsorption and detection properties of C 60 fullerene towards methadone in gas and aqua phases: a DFT study. J Mol Model 2023; 29:71. [PMID: 36808316 DOI: 10.1007/s00894-023-05470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
CONTEXT Methadone can be abused and caused addictive and has various side effects. Therefore, the development of a fast and reliable diagnosis technique for its monitoring is essential. In this work, applications of C60, GeC59, SiC59, and BC59 fullerenes were investigated utilizing density functional theory (DFT) to find a suitable probe for methadone detection. The C60 fullerene indicated weak adsorption energy for methadone sensing. Therefore, for the construction of the fullerene with good property for methadone adsorption and sensing, the GeC59, SiC59, and BC59 fullerenes have been studied. The adsorption energy of GeC59, SiC59, and BC59 in the most stable complexes were calculated at -2.08, -1.26, and -0.71 eV, respectively. Although GeC59, SiC59, and BC59 all showed strong adsorption, only BC59 present a high sensitivity for detection. Further, the BC59 fullerene showing a proper short recovery time (about 1.11 × 10-6 s for methadone desorption). Water as a solution is used to simulate the behavior of fullerenes in the body fluids, and results indicated that the selected pure and complex nanostructures are stable in water. The UV-vis spectrums indicated that the after adsorption of methadone on the BC59 exhibits shift toward the lower wavelengths (blue shift). Therefore, our investigation indicated that the BC59 fullerene is an excellent candidate for methadone detection. METHODS The interaction of methadone with pristine and doped C60 fullerenes surfaces was calculated using the density functional theory calculations. The GAMESS program and M06-2X method with a 6-31G(d) basis set were used for computations. Since the M06-2X method overestimates the LUMO-HOMO energy gaps (Eg) of carbon nanostructures, the HOMO and LUMO energies and Eg were investigated at the B3LYP/6-31G(d) level of theory using the optimization calculations. UV-vis spectra of excited species were obtained through the time-dependent density functional theory. To simulate the human biological fluid, the solvent phase was also evaluated in adsorption studies, and water was considered a liquid solvent.
Collapse
|
12
|
Ye X, Qi M, Qiang H, Chen M, Zheng X, Gu M, Zhao X, Yang Y, He C, Zhang J. Laser-ablated violet phosphorus/graphene heterojunction as ultrasensitive ppb-level room-temperature NO sensor. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
de Paul Zoua V, Didier Tamafo Fouegue A, Ousmanou Bouba M, Abdoul Ntieche R, Abdoul W. Adsorption of Juglone on Pure and Boron-doped C24 Fullerene-Like Nano-cage : A Density Functional Theory Investigation. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Fattah IMR, Farhan ZA, Kontoleon KJ, kianfar E, Hadrawi SK. Hollow fiber membrane contactor based carbon dioxide absorption − stripping: a review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Fu X, Cheng X, He C, Lin J, Liao W, Li L, Guo J. A graphene-like semiconducting BC 2P monolayer as a promising material for a Li-ion battery and CO 2 adsorbent. Phys Chem Chem Phys 2023; 25:2430-2438. [PMID: 36598374 DOI: 10.1039/d2cp04941d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Searching for high-performance anode materials and CO2 adsorption materials are key factors for next-generation renewable energy technologies and mitigation of the greenhouse effect. Herein, we report a novel two-dimensional (2D) BC2P monolayer with great potential as an anode material for lithium-ion batteries (LIBs) and as a material for CO2 adsorption. The adsorption energies of Li atoms and CO2 molecules on the BC2P supercell are negative enough to assure stability and safety under operating conditions. More intriguingly, the BC2P monolayer possesses a very high theoretical capacity of 1018.8 mA g h-1 for LIBs. In addition, the diffusion energy barriers of Li on the BC2P supercell are 0.26 and 0.87 eV, showing good charge/discharge capability, and the electrode potential of Li is beneficial to their performance as an anode material. Moreover, four chemical and three physical adsorption sites were verified, indicating that the CO2 molecule was effectively adsorbed on the BC2P supercell. These desirable properties make the BC2P monolayer a promising 2D material for application in LIBs and for CO2 adsorbents aimed at highly efficient CO2 capture.
Collapse
Affiliation(s)
- Xi Fu
- College of Science, Hunan Universtiy of Science and Engineering, Yongzhou 425199, China. .,Department of Physics, Jishou University, Jishou 416000, China
| | - Xiaoli Cheng
- Department of Physics, Jishou University, Jishou 416000, China
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Jian Lin
- Department of Physics, Jishou University, Jishou 416000, China
| | - Wenhu Liao
- Department of Physics, Jishou University, Jishou 416000, China
| | - Liming Li
- College of Science, Hunan Universtiy of Science and Engineering, Yongzhou 425199, China.
| | - Jiyuan Guo
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
16
|
A computational study on the potential application of metal-doped AlN nanotubes for chloroform detection. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Barroso-Martín I, Cecilia JA, Vilarrasa-García E, Ballesteros-Plata D, Jiménez-Gómez CP, Vílchez-Cózar Á, Infantes-Molina A, Rodríguez-Castellón E. Modification of the Textural Properties of Chitosan to Obtain Biochars for CO 2-Capture Processes. Polymers (Basel) 2022; 14:polym14235240. [PMID: 36501631 PMCID: PMC9739784 DOI: 10.3390/polym14235240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO2-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous. Moreover, this biochar is more resistant to the pyrolytic treatment in comparison to the biochars obtained from the commercial chitosan and chitosan in the form of film. CO2-adsorption studies at different temperatures have also shown that the adsorption capacity diminishes as the adsorption temperature increases, thus suggesting that the adsorption takes place by a physical process.
Collapse
Affiliation(s)
- Isabel Barroso-Martín
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Antonio Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| | - Enrique Vilarrasa-García
- Grupo de Pesquisa em Separações por Adsorção (GPSA), Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza 60455-760, CE, Brazil
| | - Daniel Ballesteros-Plata
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | - Carmen Pilar Jiménez-Gómez
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | - Álvaro Vílchez-Cózar
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | - Antonia Infantes-Molina
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
18
|
Gul S, Rasool A, Hameed S, Shehzad RA, Ayub K, Ans M, Iqbal J. Alkaline earth metals (Be, Mg, Ca) doped hexamine complexant with enhanced electronic and nonlinear optical properties. J Mol Model 2022; 28:378. [DOI: 10.1007/s00894-022-05362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
|
19
|
Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides Using Bicobalt Complexes Absorbed on DFNS. Catal Letters 2022. [DOI: 10.1007/s10562-022-04130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Mahmoud R, Mohamed F, Gaber E, Abdel-Gawad OF. Insights into the Synergistic Removal of Copper(II), Cadmium(II), and Chromium(III) Ions Using Modified Chitosan Based on Schiff Bases- g-poly(acrylonitrile). ACS OMEGA 2022; 7:42012-42026. [PMID: 36440165 PMCID: PMC9685764 DOI: 10.1021/acsomega.2c03809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 05/26/2023]
Abstract
Chitosan has received broad consideration as an adsorbent for all pollutants because of its low cost and great adsorption potential. However, its shortcomings, including sensitivity to pH, poor thermal stability, and poor mechanical strength, limit its use. The functional groups of chitosan can be modified to enhance its performance by the grafting technique and Schiff base modification. The grafting process used acrylonitrile (Ch-g-PAN) as a monomer and potassium persulfate as an initiator. After that, the modification via preparation of the Schiff base reaction using salicylaldehyde (Ch-g-Sch I) and P-anisaldehyde (Ch-g-Sch II) was carried out. The synthesized copolymers were detailed and characterized through several spectroscopic and microscopic techniques including infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. In addition, Ch-g-Sch I and Ch-g-Sch II were applied in the removal of different metal ions such as Cu2+, Cd2+, and Cr3+. The maximum adsorption capacity of Ch-g-Sch I for Cd2+ was 183.7 mg g-1 in 24 h, while in the case of Ch-g-Sch II, the maximum adsorption capacity for Cd2+ was improved to 322.9 mg g-1 for the same time. Moreover, adsorption thermodynamic analysis displays that the all ion adsorption process was not random and the pseudo-second-order model fitted with experimental results. Finally, Ch-g-Sch I and Ch-g-Sch II were applied as designs for industrial wastewater treatment with significant efficiency.
Collapse
Affiliation(s)
- Rehab
Khaled Mahmoud
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
| | - Fatma Mohamed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
- Nanophotonics
and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef62514, Egypt
| | - Esraa Gaber
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
| | - Omayma F. Abdel-Gawad
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef62514, Egypt
| |
Collapse
|
21
|
The tandem reaction of propargylamine/propargyl alcohol with CO2: Reaction mechanism, catalyst activity and product diversity. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Fu X, Cheng X, Liao W, Guo J, Li L. A metallic CP3 monolayer with very high absorption coefficients for visible light and as the CO2 absorbent. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Nasri A, Jaleh B, Shabanlou E, Nasrollahzadeh M, Ali Khonakdar H, Kruppke B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Muzammil K, Solanki R, Alkaim AF, Romero Parra RM, Lafta HA, Jalil AT, Gupta R, Hammid AT, Mustafa YF. A novel approach based on the ultrasonic-assisted microwave method for the efficient synthesis of Sc-MOF@SiO2 core/shell nanostructures for H2S gas adsorption: A controllable systematic study for a green future. Front Chem 2022; 10:956104. [PMID: 36300018 PMCID: PMC9590105 DOI: 10.3389/fchem.2022.956104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, for the first time, novel Sc-MOF@SiO2 core/shell nanostructures have been synthesized under the optimal conditions of ultrasonic-assisted microwave routes. The final products showed small particle size distributions with homogeneous morphology (SEM results), high thermal stability (TG curve), high surface area (BET adsorption/desorption techniques), and significant porosity (BJH method). The final nanostructures of Sc-MOF@SiO2 core/shell with such distinct properties were used as a new compound for H2S adsorption. It was used with the systematic investigation based on a 2K−1 factorial design, which showed high-performance adsorption of about 5 mmol/g for these novel adsorbents; the optimal experimental conditions included pressure, 1.5 bar; contact time, 20 min; and temperature, 20°C. This study and its results promise a green future for the potential control of gas pollutants.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi
| | - Reena Solanki
- Department of Chemistry, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh, India
- *Correspondence: Reena Solanki, ; Ayad F. Alkaim,
| | - Ayad F. Alkaim
- Chemistry Department College of Science for Women University of Babylon, Hillah, Iraq
- *Correspondence: Reena Solanki, ; Ayad F. Alkaim,
| | | | - Holya A. Lafta
- Department of Pharmacy, Al Nisour University College, Baghdad, Iraq
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
25
|
Activated Carbon Modified by Ester Hydrolysis of Ethyl Acetate for Water Vapor Adsorption Enhancement. Processes (Basel) 2022. [DOI: 10.3390/pr10081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To improve water vapor adsorption, this study employed oxalic acid–ethyl acetate acidic hydrolysis to modify honeycomb activated carbon and introduce hydrophilic functional groups. Scanning electron microscopy (SEM), Boehm titration, Fourier transform infrared spectroscopy (FT-IR), and an automatic surface area analyzer (BET) were used to characterize the microscopic morphology, surface functional groups, specific surface area, and pore size changes. The results showed that, when the concentration of oxalic acid is 0.0006 mol/cm3, the specific surface area is 179.06 m2/g. After hydrolysis with ethyl acetate, the original functional groups became more abundant, while the number of total acidic functional groups on the surface grew from 0.497 mmol/g to 1.437 mmol/g. The static water vapor adsorption experiments were conducted on modified activated carbon under constant temperature and humidity conditions. Compared with unmodified activated carbon, the activated carbon modified with 0.0006 mol/cm3 oxalic acid increased the adsorption capacity of water vapor by 15.7%. The adsorption capacity of activated carbon after being combined with 0.0006 mol/cm3 oxalic acid and ester hydrolysis modification increased by 37.1%. At the same temperature, the adsorption capacity increased with a higher relative humidity. At the same relative humidity, the adsorption capacity decreased as the temperature rose. Therefore, this modification method may provide clues for the application of enhancing the hygroscopic ability of activated carbon.
Collapse
|
26
|
Sarin chemical warfare agent detection by Sc-decorated XN nanotubes (X = Al or Ga). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Kadhim MM, Alomar TS, Hachim SK, Abdullaha SA, Zedan Taban T, AlMasoud N. Aluminium carbide nano-sheet as a promising adsorbent for removal of carbendazim. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Simultaneous Removal of SO2 and NO by O3 Oxidation Combined with Seawater as Absorbent. Processes (Basel) 2022. [DOI: 10.3390/pr10081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aiming at NOx (NO 90%, NO2 10%) and SO2 in simulated vessel emissions, denitration and desulfurization were studied through ozone oxidation combined with seawater as absorbent. Specifically, the different influencing factors of denitration and desulfurization were analyzed. The results indicated that the oxidation efficiency of NO can reach over 90% when the molar ratio of O3/NO is 1.2. Ozone oxidation and seawater washing in the same unit can decrease the temperature of ozone oxidation of NO, avoid high temperature ozone decomposition, and enhance the oxidation efficiency of NO. When NO inlet initial concentration is lower than 800 ppm, the NOx removal efficiency can be improved by increasing NO inlet concentration, and when NO inlet initial concentration is greater than 800 ppm, increasing the concentration of NO would decrease the NOx removal efficiency. Increasing the inlet concentration of SO2 has minor effect on desulfurization, but slightly reduces the absorption efficiency of NOx due to the competition of SO2 and NOx in the absorption solution. Besides, final products (NO2−, NO3−, SO32−, and SO42−) were analyzed by the ion chromatography.
Collapse
|
29
|
Manouchehri F, Iranpanah S. Thioguanine adsorption on the γ- graphyne and its boron nitride analogue as promising drug delivery system: Electronic study via DFT. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Ringwal S, Bartwal AS, Sati SC. Determination of antioxidant and catalytic activity of bio-synthesized Ag-MgO nanocomposite from peels extract of Citrus aurantium in the rapid treatment of wastewater management. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Tianhao Z, Sh. Majdi H, Olegovich Bokov D, Abdelbasset WK, Thangavelu L, Su CH, Chinh Nguyen H, Alashwal M, Ghazali S. Prediction of busulfan solubility in supercritical CO2 using tree-based and neural network-based methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Shojaei M, Esmaeili H. Ultrasonic-assisted synthesis of zeolite/activated carbon@MnO 2 composite as a novel adsorbent for treatment of wastewater containing methylene blue and brilliant blue. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:279. [PMID: 35290530 DOI: 10.1007/s10661-022-09930-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In this study, zeolite/activated carbon@MnO2 composite was used as a novel adsorbent to eliminate methylene blue (MB) and brilliant blue (BB) dyes from aqueous media. To this end, activated carbon (AC) was produced by Ziziphus Spina-Christi leaves and then used to synthesize zeolite/AC@MnO2 composite. Various analyses such as BET, SEM, EDX, Map, FTIR, and XRD were performed to determine the surface features of the above composite. BET analysis indicated that the aforementioned composite has a mesoporous structure. Also, the best conditions for the adsorption of MB and BB dyes were obtained at pH of 9 and 2, temperature of 25 °C, adsorbent dosage of 1 and 2 g/L, initial dye concentration of 10 mg/L, and contact time of 40 and 60 min, respectively. Under optimal conditions, the utmost removal efficiency of MB and BB dyes using the zeolite/AC@MnO2 composite was 98.43% and 96.54%, respectively, indicating significant adsorption efficiencies. Moreover, the utmost adsorption capacity of MB and BB dyes was 67.56 and 66.22 mg/g, respectively. Furthermore, intraparticle and film diffusion mechanisms were very important in the adsorption process. Besides, thermodynamic and equilibrium studies indicated that the adsorption process is exothermic, physical, and spontaneous. Generally, the aforementioned composite has a significant adsorption capacity and can be a suitable adsorbent to eliminate cationic dyes from industrial effluents.
Collapse
Affiliation(s)
- Meysam Shojaei
- Department of Chemical Engineering, Dashtestan Branch, Islamic Azad University, Dashtestan, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
33
|
A Review of High-Energy Density Lithium-Air Battery Technology: Investigating the Effect of Oxides and Nanocatalysts. J CHEM-NY 2022. [DOI: 10.1155/2022/2762647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vehicles that require a lot of electricity, such as electric vehicles, it is necessary to use high-energy batteries. Among the developed batteries, the lithium-ion battery has shown better performance. This battery has an energy density of 10 equal to that of a lithium-ion battery and uses air oxygen as the active material of the cathode and anode like a lithium-ion battery made of lithium metal. The cathode used in these batteries must have special properties such as strong catalytic activity and high conductivity, and nanotechnology has greatly helped to improve the materials used in the cathode of lithium-air batteries. The importance of proper catalyst distribution and the relationship between the oxide product and the catalyst and the indirect effect of the ORR catalyst on the OER reaction is not present in the fuel cell. The maximum capacity of lithium-air battery theory using graphene under optimal electron conduction conditions and the experimental maximum obtained for graphene by optimizing the structure geometry, examples of structural engineering using carbon fiber and carbon nanotubes in cathode fabrication with the ability to perform the reaction properly while providing space for lithium oxide placement, are examined. This article describes the mechanism of this battery, and its components are examined. The challenges of using this battery and the application of nanotechnology to solve these challenges are also discussed.
Collapse
|
34
|
Chen L, Huang H, Thangavelu L, Abdelbasset WK, Bokov DO, Algarni M, Ghazali S, Alashwal M. Optimization and comparison of machine learning methods in estimation of carbon dioxide loading in chemical solvents for environmental applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Jasim SA, Yasin G, Ansari MJ, Zarifi K. Density functional theory investigation of ozone gas uptake by a BeO nanoflake. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to importance of the gas uptake topic in environment and energy issues, this work was performed for investigating ozone (Oz) gas uptake by means of a beryllium oxide (BeO) nanoflake. To this aim, density functional theory (DFT) calculations and the quantum theory of atoms in molecules (QTAIM) analysis were performed. The monolayer BeO nanoflake was decorated by a HEME-like N4Fe region to prepare an interacting region towards the Oz uptake. Accordingly, three models were optimized based on configurations of Oz molecule relaxation at the BeO surface, in which two types of O ... Fe and O ... N interactions were observed. In this case, Oz3@BeO model was involved with two mentioned types of interactions and three occurred interaction between Oz and BeO making it as the strongest bimolecular formation model of Oz@BeO. Moreover, electronic molecular orbital features indicated that the models formations could be also related to sensor functions by variations of electric conductivity because of Oz gas uptake. As a consequence, the investigated BeO nanoflake of this work was proposed for employing in Oz gas uptake for different purposes.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | |
Collapse
|
36
|
Ansari MJ, Jasim SA, Abed AM, Altimari US, Yasin G, Suksatan W, Oudaha KH, Kadhim MM, Jabbar AH, Mustafa YF. Double chelation of Iron through dimer formation of favipiravir: Density functional theory analysis. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This work was performed to examine an idea about full chelation of Iron (Fe) by well-known favipiravir (Fav) as a possible mechanism of action for medication of COVID-19 patients. To this aim, formations of Fe- mediated dimers of Fav were investigated by performing density functional theory (DFT) computations of electronic and structural features for singular and dimer models. The results indicated that the models of dimers were suitable for formation, in which two cis (D1) and trans (D2) models were obtained regarding the configurations of two Fav counterparts towards each other. Energy results indicated that formation of D1 was slightly more favorable than formation of D2. Molecular orbital features affirmed hypothesized interacting sites of Fav for Fe-mediated dimers formations, in which atomic charges and other molecular orbital related representations affirmed such achievements. Moreover, detection of such dimer formation was also possible by monitoring variations of molecular orbitals features. As a consequence, formations of Fe-mediated dimers of Fav could be achievable for possible removal of excess of Fe as a proposed mechanism of action for Fav in medication of COVID-19 patients.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-Anbar-Ramadi, Iraq
| | - Azher M. Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Khulood H. Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, Iraq
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Abdullah Hasan Jabbar
- Optical Department, College of Medical and Health Technology, Sawa University, Ministry of Higher Education and Scientific Research, Al-Muthanaa, Samawah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
37
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|