1
|
Wu L, Jiao L, Xue D, Li Y, Han Y, Ouyang W, Chen Q. Nanozyme and bifunctional nanobody-based colorimetric-SERS dual-mode Immunosensor for microcystin-LR detection. Food Chem 2025; 464:141574. [PMID: 39396471 DOI: 10.1016/j.foodchem.2024.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Microcystin-LR (MC-LR), a potent cyanotoxin in freshwater, poses a risk of severe liver damage and other health issues, making its detection vital. However, the detection capabilities of conventional antibodies are constrained, which limited their use in immunoassays. In this work, we designed a new bifunctional nanobody, named A2.3-SBP (comprised of nanobody and streptavidin binding peptide), capable of binding with MC-LR and streptavidin. Based on A2.3-SBP and Fe3O4@Au-Pt nanozyme, we introduced an enzyme-free immunosensor that operated in microplate with colorimetric and surface-enhanced Raman scattering (SERS) detection modes. The dual-mode assay showed color changes and SERS intensity directly correlating to MC-LR concentrations with a range from 1.0 to 500 ng/mL and a limit of detection of 0.26 and 0.032 ng/mL, respectively. This strategy eliminated the need for complex enzymatic reactions and realized dual-signal detection of MC-LR in 96 water samples (0.03 μg/kg) within 30 min, suggesting its potential in drinking water detection.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Luyao Jiao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Danni Xue
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Yueqing Li
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Yu Han
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, PR China
| | - Wei Ouyang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Qi Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
2
|
Song Y, Wang X, Wang L, Qu L, Zhang X. Functionalized Face Masks as Smart Wearable Sensors for Multiple Sensing. ACS Sens 2024; 9:4520-4535. [PMID: 39297358 DOI: 10.1021/acssensors.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Wearable sensors provide continuous physiological information and measure deviations from healthy baselines, resulting in the potential to personalize health management and diagnosis of diseases. With the emergence of the COVID-19 pandemic, functionalized face masks as smart wearable sensors for multimodal and/or multiplexed measurement of physical parameters and biochemical markers have become the general population for physiological health management and environmental pollution monitoring. This Review examines recent advances in applications of smart face masks based on implantation of digital technologies and electronics and focuses on respiratory monitoring applications with the advantages of autonomous flow driving, enrichment enhancement, real-time monitoring, diversified sensing, and easily accessible. In particular, the detailed introduction of diverse respiratory signals including physical, inhalational, and exhalant signals and corresponding associations of health management and environmental pollution is presented. In the end, we also provide a personal perspective on future research directions and the remaining challenges in the commercialization of smart functionalized face masks for multiple sensing.
Collapse
Affiliation(s)
- Yongchao Song
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiyan Wang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Lirong Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xian, Shaanxi 710126, China
| | - Lijun Qu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
3
|
Zha Q, Luo Y, Liu C, Xu T. Integrated phase separation in microliter droplets for ultratrace-enriching biomarker analysis. LAB ON A CHIP 2024; 24:1775-1781. [PMID: 38357751 DOI: 10.1039/d3lc00953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Ultratrace-enriching biomarker analysis is an effective method for achieving highly accurate and enhanced sensitive detection. In this study, we have developed an enrichment detection platform by combining a minipillar array with an aqueous two-phase system (ATPS) for ultratrace enriching biomarker analysis. After optimizing the enrichment conditions of ATPS, target miRNAs at ultratrace levels specifically accumulate in the DEX-rich phase, which significantly increases the target miRNA concentration-related fluorescence intensity. Compared to non-enriched miRNA in the single-phase PEG solution, the detection limit of ATPS-enriched miRNA had improved more than 200-fold. The ATPS-based enrichment detection strategy offers a novel and convenient approach for the simultaneous detection of biomarkers with ultratrace.
Collapse
Affiliation(s)
- Qihao Zha
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
| | - Yong Luo
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
4
|
Evtushenko EG, Gavrilina ES, Vasilyeva AD, Yurina LV, Kurochkin IN. Highly Sensitive Measurement of Horseradish Peroxidase Using Surface-Enhanced Raman Scattering of 2,3-Diaminophenazine. Molecules 2024; 29:793. [PMID: 38398545 PMCID: PMC10891785 DOI: 10.3390/molecules29040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The development of various enzyme-linked immunosorbent assays (ELISAs) coupled with surface-enhanced Raman scattering (SERS) detection is a growing area in analytical chemistry due to their potentially high sensitivity. A SERS-based ELISA with horseradish peroxidase (HRP) as an enzymatic label, an o-phenylenediamine (oPD) substrate, and a 2,3-diaminophenazine (DAP) enzymatic product was one of the first examples of such a system. However, the full capabilities of this long-known approach have yet to be revealed. The current study addresses a previously unrecognized problem of SERS detection stage performance. Using silver nanoparticles and model mixtures of oPD and DAP, the effects of the pH, the concentration of the aggregating agent, and the particle surface chloride stabilizer were extensively evaluated. At the optimal mildly acidic pH of 3, a 0.93 to 1 M citrate buffer, and AgNPs stabilized with 20 mM chloride, a two orders of magnitude advantage in the limits of detection (LODs) for SERS compared to colorimetry was demonstrated for both DAP and HRP. The resulting LOD for HRP of 0.067 pmol/L (1.3 amol per assay) underscores that the developed approach is a highly sensitive technique. We suppose that this improved detection system could become a useful tool for the development of SERS-based ELISA protocols.
Collapse
Affiliation(s)
- Evgeniy G. Evtushenko
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elizaveta S. Gavrilina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Alexandra D. Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Lyubov V. Yurina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Ilya N. Kurochkin
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
5
|
Xiao J, Chen Y, Xu T, Zhang X. Hand-held Raman spectrometer-based flexible plasmonic biosensor for label-free multiplex urinalysis. Talanta 2024; 266:124966. [PMID: 37499361 DOI: 10.1016/j.talanta.2023.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Urinalysis is an effective strategy to non-invasively evaluate human health, and surface-enhanced Raman scattering (SERS) may be a powerful technique for use in detecting analytes in urine. Herein, we report a wearable diaper sensor based on a handheld Raman spectrometer for use in the simple, label-free identification of biomolecules (urea, creatinine, and bilirubin) in urine. The raspberry-shaped Au substrate formed on the surface of an Si wafer provides plasmonic enhancement of the SERS signals, with an excellent uniformity and stability. The SERS sensor combines the advantages of flexibility, portability, and multifunctional detection and may be used in identifying multiple analytes in urine. The sensor exhibits high sensitivities in detecting urea, creatinine, and bilirubin, with respective detection limits of 4.17 × 10-3 M, 5.90 × 10-6 M, and 1.38 × 10-7 M (signal-to-noise ratio = 3). Furthermore, we used the wearable diaper sensor to monitor biomolecules at the diagnostic threshold, facilitating non-invasive diagnosis and medical monitoring of disease-related biomarkers.
Collapse
Affiliation(s)
- Jingyu Xiao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yanxia Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing, 100101, China
| | - Tailin Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Song Y, Wang L, Xu T, Zhang G, Zhang X. Emerging open-channel droplet arrays for biosensing. Natl Sci Rev 2023; 10:nwad106. [PMID: 38027246 PMCID: PMC10662666 DOI: 10.1093/nsr/nwad106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/01/2023] Open
Abstract
Open-channel droplet arrays have attracted much attention in the fields of biochemical analysis, biofluid monitoring, biomarker recognition and cell interactions, as they have advantages with regard to miniaturization, parallelization, high-throughput, simplicity and accessibility. Such droplet arrays not only improve the sensitivity and accuracy of a biosensor, but also do not require sophisticated equipment or tedious processes, showing great potential in next-generation miniaturized sensing platforms. This review summarizes typical examples of open-channel microdroplet arrays and focuses on diversified biosensing integrated with multiple signal-output approaches (fluorescence, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical, etc.). The limitations and development prospects of open-channel droplet arrays in biosensing are also discussed with regard to the increasing demand for biosensors.
Collapse
Affiliation(s)
- Yongchao Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guangyao Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Gopinath SCB, Ramanathan S, Chinni SV, Dorairaj V, Lakshmipriya T. Non-protein coding RNA sequences mediate specific colorimetric detection of Staphylococcus aureus on unmodified gold nanoparticles. Sci Rep 2022; 12:12621. [PMID: 35871246 PMCID: PMC9308785 DOI: 10.1038/s41598-022-16551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nonprotein coding RNA (npcRNA) is a transcribed gene sequence that is not able to translate into protein, yet it executes a specific function in modulation and regulation mechanisms. As npcRNA is highly resistant to the mutation, the Sau-02 npcRNA gene and its probe oligonucleotide, which are specifically present in Staphylococcus aureus and in methicillin-resistant S. aureus only, used to develop a highly specific and sensitive colorimetric assay on unmodified gold nanoparticles (AuNPs). Hybridization between the npcRNA Sau-02 gene sequences was detected through noncrosslinking AuNP aggregation in salt solution in the presence of probe-target gene sequences. AuNPs of 10 and 15 nm in sizes with monovalent ion salt (NaCl) solution were optimized as the ideal tool for investigating the stability of AuNPs upon the addition of gene sequences. The state dispersed and aggregated forms of 10 nm AuNPs with the presented colorimetric assay were justified through field emission scanning electron microscopy and atomic force microscopy. The particle distribution of two different AuNP states was evaluated through particle distribution analysis. The lowest detection amount of S. aureus npcRNA from the colorimetric assay performed was 6 pg/µL, as the color of AuNPs turned blue with the presence of probe oligonucleotides and target gene sequences.
Collapse
|