1
|
Ji J, Li K, Zhou X, Xu C, Zhang D, Shao W. Visible-light organophotoredox-catalyzed fluoroalkyl aminoxylation of unactivated and activated alkenes. Chem Commun (Camb) 2025; 61:6767-6770. [PMID: 40200841 DOI: 10.1039/d5cc00748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
An efficient method for the regioselective tetra-, tri-, di- and per-fluoroalkyl aminoxylation of unactivated and activated alkenes has been achieved with various fluorinated alkyl halides and OH-hydroxylamines. This developed photoredox-neutral protocol features versatile transformations to novel tetrafluoroethylene-containing compounds.
Collapse
Affiliation(s)
- Jianhua Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Kangjie Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Xiangzhu Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Chun Xu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Die Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wen Shao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
2
|
Kong L, Zhang J, Wang H, Wei Z, Wang W, Hu J, Dong M. B12-Dependent Radical SAM Enzymes Catalyze C-Fluoromethylation via a CH 2F-Cobalamin Intermediate. Angew Chem Int Ed Engl 2025; 64:e202419815. [PMID: 39739428 DOI: 10.1002/anie.202419815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Fluorine and fluorine-containing functional groups play important roles in drugs and agrochemicals. Recently, SAM-dependent methyltransferases and several SAM analogues have been reported for fluoromethyl transfer through a nucleophilic mechanism. However, fluoromethylation of unactivated carbon centers is very challenging, and their substitution usually involves a radical mechanism. To date, no biocatalysts have been developed for fluoromethylation of unactivated carbon centers. In this study, we found that the B12-dependent radical SAM methyltransferase (B12-RSMT) QCMT can fluoromethylate the glutamine Cα position of peptides with fluorinated SAM (F-SAM) generated in situ by the enzyme AclHMT. QCMT can cleave F-SAM to produce the 5'-dA radical. The significant reaction intermediate CH2FCbI was characterized by HR-MS, 19F NMR spectroscopy and X-ray crystallography. In addition, B12-RSMTs CysS and GenD1 can also transfer fluoromethyl groups onto natural products. We also found that F-SAM is not compulsory. The reduced B12-RSMTs can directly generate CH2FCbI with CH2FI and transfer the CH2F group when SAM is used as the radical initiator. Our results demonstrate a radical-mediated enzymatic strategy for fluoromethylation with abiological cofactors and expand radical SAM enzymes to the field of fluorine chemistry.
Collapse
Affiliation(s)
- Liyuan Kong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianliang Zhang
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin, 300382, China
| | - Haoxin Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhifeng Wei
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Wenrui Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Hu
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin, 300382, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Bonku EM, Qin H, Odilov A, Abduahadi S, Guma SD, Zhu F, Shen J. A review of the synthetic strategies toward the antiviral drug tecovirimat. Org Biomol Chem 2025; 23:239-254. [PMID: 39324344 DOI: 10.1039/d4ob01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This review provides a comprehensive analysis of synthetic routes for tecovirimat, an antiviral drug used to treat orthopoxvirus infections, including monkeypox and smallpox. We focus on the scale-up synthesis of key intermediates, including cycloheptatriene, as documented in the published literature and patent records. The review highlights the efficiency, yield, and purity of these approaches, as well as the minimization of genotoxic and in-process impurities. Furthermore, we critically evaluate the recently reported optimized industrial-scale synthesis process, highlighting its advantages and limitations, and identifying avenues for further improvement. By obtaining insights from the published literature and patent records, this review elucidates the current state of knowledge regarding key synthesis parameters influencing tecovirimat production and emphasizes the critical importance of optimizing synthesis techniques to achieve remarkable improvements in safety and environmental impact. This review serves as a valuable resource for researchers and industry professionals in the field of R&D and production of APIs, particularly in expediting the safe and efficient industrial production of tecovirimat.
Collapse
Affiliation(s)
- Emmanuel Mintah Bonku
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Hongjian Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
| | - Abdullajon Odilov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Safomuddin Abduahadi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Samuel Desta Guma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Fuqiang Zhu
- Topharman Shanghai Co., Ltd., No. 388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201203, P. R. China.
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Huang Q, Lou C, Lv L, Li Z. Photoinduced fluoroalkylation-peroxidation of alkenes enabled by ligand-to-iron charge transfer mediated decarboxylation. Chem Commun (Camb) 2024; 60:12389-12392. [PMID: 39370965 DOI: 10.1039/d4cc04650a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We report here a photoinduced iron-catalyzed fluoroalkylation-peroxidation of activated and/or unactivated alkenes with fluoroalkyl carboxylic acids and hydroperoxide. The ligand-to-iron charge transfer strategy effectively overcomes the high redox potential of the fluoroalkyl carboxylic acids, facilitating the difunctionalization reaction to occur smoothly under mild reaction conditions. The late-stage functionalization of drug and natural product derivatives was also demonstrated.
Collapse
Affiliation(s)
- Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Chenhao Lou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
5
|
Li H, Hu K, Zhang J, Jiang H. Cu 0-Promoted Truce-Smiles Rearrangement for Aryl-Difluoromethylenation of C═C Bonds via a Reductive Radical-Polar Crossover Process. J Org Chem 2024; 89:13947-13952. [PMID: 39279455 DOI: 10.1021/acs.joc.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
An efficient Cu0-promoted Truce-Smiles rearrangement for the aryl-difluoromethylenation of C═C bonds by the reaction of N-alkyl-N-(arylsulfonyl)methacrylamide and 2-bromodifluoromethyl-1,3-benzodiazole via a reductive radical-polar crossover process under mild reaction conditions is presented. The protocol enables practical access to a variety of single regioisomer α-aryl-β-difluoromethylene amides in good to excellent yields through consecutive difluoromethylenation, radical-polar crossover, 1,4-aryl migration, SO2 extrusion, and N-H bond formation cascade reaction.
Collapse
Affiliation(s)
- Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Kaiji Hu
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, PR China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
6
|
Lu J, Chen S, Wu M, Yin H, Lin X, Wu W, Weng Z. Copper-Catalyzed Oxidative Synthesis of 3-Aryl-5-fluoroalkyl-1,3,4-oxadiazol-2(3 H)-ones Using Perfluorocarboxylic Anhydride as a Reagent. J Org Chem 2024; 89:14447-14453. [PMID: 39319749 DOI: 10.1021/acs.joc.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A copper-catalyzed oxidative annulation of sydnones with perfluorocarboxylic anhydride for the synthesis of 3-aryl-5-fluoroalkyl-1,3,4-oxadiazol-2(3H)-ones is developed. A diverse array of 3-aryl-5-fluoroalkyl-1,3,4-oxadiazol-2(3H)-ones are prepared with good yields (>73 examples, yields up to 95%). The synthetic utility of the developed protocol was demonstrated by gram-scale synthesis, and the synthetic transformation to 1,2,4-triazol-3-one products. A mechanistic study suggests that the reaction proceeds via the extrusion of carbon dioxide to generate the hydrazide intermediate, which then undergoes intramolecular cyclization and oxidation.
Collapse
Affiliation(s)
- Jiaqing Lu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- SINOPEC (Beijing), Research Institute of Chemical Industry Co., Ltd, Beijing 10013, China
| | - Shouxiong Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Minze Wu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Hongshan Yin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xi Lin
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Wei Wu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
7
|
Jiang X, Lan Y, Hao Y, Jiang K, He J, Zhu J, Jia S, Song J, Li SJ, Niu L. Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer. Nat Commun 2024; 15:6115. [PMID: 39033136 PMCID: PMC11271273 DOI: 10.1038/s41467-024-50507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Reforming sustainable 3d-metal-based visible light catalytic platforms for inert bulk chemical activation is highly desirable. Herein, we demonstrate the use of a Brønsted acid to unlock robust and practical iron ligand-to-metal charge transfer (LMCT) photocatalysis for the activation of multifarious inert haloalkylcarboxylates (CnXmCOO-, X = F or Cl) to produce CnXm radicals. This process enables the fluoro-polyhaloalkylation of non-activated alkenes by combining easily available Selectfluor as a fluorine source. Valuable alkyl fluorides including potential drug molecules can be easily obtained through this protocol. Mechanistic studies indicate that the real light-harvesting species may derive from the in situ-assembly of Fe3+, CnXmCOO-, H+, and acetonitrile solvent, in which the Brønsted acid indeed increases the efficiency of LMCT between the iron center and CnXmCOO- via hydrogen-bond interactions. We anticipate that this Brønsted acid-unlocked iron LMCT platform would be an intriguing sustainable option to execute the activation of inert compounds.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, PR China.
| | - Yudong Hao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiali Zhu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinshuai Song
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shi-Jun Li
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
| |
Collapse
|
8
|
Wu W, Zhang Z, Li J, Xia J, Han X, Weng Z. Copper Loading-Controlled Selective Synthesis of 2,5-Bis(trifluoromethyl) and Monotrifluoromethyl-Substituted Oxazoles. J Org Chem 2024; 89:589-598. [PMID: 38149374 DOI: 10.1021/acs.joc.3c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A general domino annulation reaction of sulfonylmethyl isocyanide with trifluoroacetic anhydride in the presence of copper chloride as an additive is developed. The reaction affords 2,5-bis(trifluoromethyl)oxazoles in modest to good yields under mild conditions. A wide variety of sulfonylmethyl isocyanide and perfluorocarboxylic anhydride substrates are amenable to this transformation. Under a higher copper salt loading conditions, the reaction led to the formation of monotrifluoromethyl-substituted oxazole product.
Collapse
Affiliation(s)
- Wei Wu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zipeng Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jialong Li
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jianrong Xia
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Han
- Testing and Analysis Center, Soochow University, Suzhou 215123, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
9
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
10
|
Purushotam, Bera A, Banerjee D. Recent advances on non-precious metal-catalysed fluorination, difluoromethylation, trifluoromethylation, and perfluoroalkylation of N-heteroarenes. Org Biomol Chem 2023; 21:9298-9315. [PMID: 37855147 DOI: 10.1039/d3ob01132a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This review highlights the recent advances, from 2015 to 2023, on the introduction of organo-fluorine derivatives at the N-heteroarene core. Notable features considering new technologies based on organofluorine compounds such as: (i) approaches based on non-precious metal catalysis (Fe, Co, Mn, Ni, etc.), (ii) the development of new strategies using non-precious metal-catalysts for the introduction of organo-fluorinine derivatives using N-heterocycles with one or more heteroatoms, (iii) newer reagents for fluorination, difluoromethylation, trifluoromethylation, or perfluoroalkylation of N-heteroarenes using different approaches, (iv) mechanistic studies on various catalytic transformations, as and when required, and (v) the synthetic applications of various bio-active organo-fluorine compounds, including post-synthetic drug derivatization, are discussed.
Collapse
Affiliation(s)
- Purushotam
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
11
|
Du HW, Du YD, Zeng XW, Shu W. Access to Trifluoromethylketones from Alkyl Bromides and Trifluoroacetic Anhydride by Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202308732. [PMID: 37534823 DOI: 10.1002/anie.202308732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic trifluoromethyl ketones are a type of unique fluorine-containing subunit which play a significant role in altering the physical and biological properties of molecules. Catalytic methods to provide direct access to aliphatic trifluoromethyl ketones are highly desirable yet remain underdeveloped, partially owing to the high reactivity and instability of trifluoroacetyl radical. Herein, we report a photocatalytic synthesis of trifluoromethyl ketones from alkyl bromides with trifluoroacetic anhydride. The reaction features dual visible-light and halogen-atom-transfer catalysis, followed by an enabling radical-radical cross-coupling of an alkyl radical with a stabilized trifluoromethyl radical. The reaction provides straightforward access to aliphatic trifluoromethyl ketones from readily available and cost-effective alkyl halides and trifluoroacetic anhydride (TFAA).
Collapse
Affiliation(s)
- Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yi-Dan Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xian-Wang Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
12
|
Kawamura S, Sodeoka M. Understanding and Controlling Fluorinated Diacyl Peroxides and Fluoroalkyl Radicals in Alkene Fluoroalkylations. CHEM REC 2023; 23:e202300202. [PMID: 37522613 DOI: 10.1002/tcr.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The demand for practical methods for the synthesis of novel fluoroalkyl molecules is increasing owing to their diverse applications. Our group has achieved efficient difunctionalizing fluoroalkylations of alkenes using fluorinated carboxylic anhydrides as user-friendly fluoroalkyl sources. Fluorinated diacyl peroxide, prepared in situ from carboxylic anhydrides, enables the development of novel reactions when used as a radical fluoroalkylating reagent. In this account, we aim to provide an in-depth understanding of the structure, bonding, and reactivity of fluorinated diacyl peroxides and radicals as well as their control in fluoroalkylation reactions. In the first part of this account, the physical properties and reactivity of diacyl peroxides and fluoroalkyl radicals are described. In the subsequent part, we categorize the reactions into copper-catalyzed and metal-free methods utilizing the oxidizing properties of fluorinated diacyl peroxides. We also outline examples and mechanisms.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
13
|
Giri R, Mosiagin I, Franzoni I, Nötel NY, Patra S, Katayev D. Photoredox Activation of Anhydrides for the Solvent-Controlled Switchable Synthesis of gem-Difluoro Compounds. Angew Chem Int Ed Engl 2022; 61:e202209143. [PMID: 35997088 PMCID: PMC9826529 DOI: 10.1002/anie.202209143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
The incorporation of the gem-difluoromethylene (CF2 ) group into organic frameworks is highly sought due to the influence of this unit on the physicochemical and pharmacological properties of molecules. Herein we report an operationally simple, mild, and switchable protocol to access various gem-difluoro compounds that employs chlorodifloroacetic anhydride (CDFAA) as a low-cost and versatile fluoroalkylating reagent. Detailed mechanistic studies revealed that electron-transfer photocatalysis triggers mesolytic cleavage of a C-Cl bond generating a gem-difluoroalkyl radical. In the presence of alkene, this radical species acts as a unique intermediate that, under solvent-controlled reaction conditions, delivers a wide range of gem-difluorinated γ-lactams, γ-lactones, and promotes oxy-perfluoroalkylation. These protocols are flow- and batch-scalable, possess excellent chemo- and regioselectivity, and can be used for the late-stage diversification of complex molecules.
Collapse
Affiliation(s)
- Rahul Giri
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Ivan Mosiagin
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Ivan Franzoni
- NuChem Sciences Inc.2350 Rue Cohen, Suite 201Saint-LaurentQuebecH4R 2N6Canada
- Present address: Valence Discovery Inc.6666 Rue St-Urbain, Suite 200MontrealQuebecH2S 3H1Canada
| | - Nicolas Yannick Nötel
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZürichVladimir-Prelog-Weg8093ZürichSwitzerland
| | - Subrata Patra
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Dmitry Katayev
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| |
Collapse
|
14
|
Regioselective Synthesis of 5-Trifluoromethyl 1,2,4-Triazoles via [3 + 2]-Cycloaddition of Nitrile Imines with CF 3CN. Molecules 2022; 27:molecules27196568. [PMID: 36235104 PMCID: PMC9572902 DOI: 10.3390/molecules27196568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
We herein describe a general approach to 5-trifluoromethyl 1,2,4-triazoles via the [3 + 2]-cycloaddition of nitrile imines generated in situ from hydrazonyl chloride with CF3CN, utilizing 2,2,2-trifluoroacetaldehyde O-(aryl)oxime as the precursor of trifluoroacetonitrile. Various functional groups, including alkyl-substituted hydrazonyl chloride, were tolerated during cycloaddition. Furthermore, the gram-scale synthesis and common downstream transformations proved the potential synthetic relevance of this developed methodology.
Collapse
|
15
|
Giri R, Mosiagin I, Franzoni I, Nötel NY, Patra S, Katayev D. Photoredox Activation of Anhydrides for the Solvent‐Controlled Switchable Synthesis of gem‐Difluoro Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rahul Giri
- University of Fribourg: Universite de Fribourg Chemistry Department Chemin du Musée 9 1700 Fribourg SWITZERLAND
| | - Ivan Mosiagin
- University of Fribourg: Universite de Fribourg Chemistry Department Chemin du Musée9 1700 Fribourg SWITZERLAND
| | - Ivan Franzoni
- Valence Discovery Inc. Research Department 6666 Rue St-Urbain, Suite 200Montreal H2S 3H1 Quebec CANADA
| | - Nicolas Yannick Nötel
- Swiss Federal Institute of Technology Zurich: Eidgenossische Technische Hochschule Zurich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND
| | - Subrata Patra
- University of Fribourg: Universite de Fribourg Chemistry Department Chemin du Musée9 1700 Fribourg SWITZERLAND
| | - Dmitry Katayev
- University of Fribourg: Universite de Fribourg Department of Chemistry Chemin du Musée 9 1700 Fribourg SWITZERLAND
| |
Collapse
|
16
|
Teng Y, Fang T, Lin Z, Qin L, Jiang M, Wu W, You Y, Weng Z. Ring-expansion reaction for the synthesis of 2-(trifluoromethyl)oxazoles and 3-(trifluoromethyl)-1,2,4-triazines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Ligand‐Controlled Palladium‐Catalyzed Regiodivergent Defluorinative Allylation of
gem
‐Difluorocyclopropanes
via
σ‐Bond Activation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|