1
|
Han Z, Liu YG, Zhang R, Shi J, Jia Y, Liu X, Jiang HY. One-Pot Synthesis of C@BiOBr for Efficient Photocatalytic Degradation of Phenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39029112 DOI: 10.1021/acs.langmuir.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
This work describes the synthesis of C@BiOBr using glucose as the carbon precursor by a repeatable one-step hydrothermal method. Characterization studies indicate that the structure of BiOBr did not change after the carbon layer was encapsulated on the surface. The highest activity is achieved at 1.2-C@BiOBr, with 97% of phenol (50 mg·L-1) degrading within 90 min, and the degradation amount of phenol is determined to be 48.5 mg·g-1 with a speed of 0.54 mg·g-1·min-1. The useful species of phenol degradation are studied and assigned to •O2-, 1O2, and h+. The effect of coated carbon layer for photocatalytic degradation of phenol over BiOBr is studied by photoelectrochemical experiments, fluorescence spectra, and density functional theory (DFT) calculations. It is attributed to the good conductivity of carbon, enhanced separation of the photocarriers by carbon coating, and thermodynamically favorable reactive oxygen species (ROS) production on the surface of carbon. This work demonstrates that carbon coating is an effective strategy to improve the photocatalytic activity of BiOBr and reveals the detailed mechanism.
Collapse
Affiliation(s)
- Zhenyu Han
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ya-Ge Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ruixue Zhang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiale Shi
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yibing Jia
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiaochun Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
2
|
Huang JB, Yin L, Yue TC, Wang LL, Wang DZ. Assembly of Functional Co(II) Metal-Organic Frameworks through a Mixed Ligand Strategy: Structure and Photocatalytic Degradation Properties. Inorg Chem 2024; 63:6928-6937. [PMID: 38571457 DOI: 10.1021/acs.inorgchem.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Four Co(II)-based metal-organic frameworks (MOFs) were constructed by a mixed ligand strategy under solvothermal conditions. The controllable modification of the bridging groups in the secondary building units was realized by changing the anions in MOFs 1-3. The MOF 4 with 3D framework structure was obtained by regulating the solvent ratio following the synthesis process of MOF 3. Furthermore, the MOFs 1-4 exhibited efficient photocatalytic activity for the degradation of malachite green (MG) dye without any photosensitizer or cocatalyst under a low-energy light source, the decolorization ratio of MG all reached more than 96.0% within 60 min, and maximal degradation was obtained to be 99.4% (MOF 4). The recycling experiments showed that the degradation rate of MG was still higher than 91% after 10 cycles. In the MOF 4 as representation, the photocatalytic process was explored systematically. The possible mechanism of catalytic degradation was discussed, which proved the existence of efficient oxidation active factors (•O2-, •OH, and h+). The possible intermediates and degradation pathways were investigated based on high-performance liquid chromatography tandem mass spectrometry. Additionally, MOFs 1-4 also exhibited excellent photocatalytic activity for the degradation of methylene blue, methyl violet, rhodamine B, and basic red 9.
Collapse
Affiliation(s)
- Jian-Bo Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Lin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Tian-Cai Yue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Lu-Lu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Duo-Zhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| |
Collapse
|
3
|
Chen X, Xu Z, Chen J, Yao L, Xie W, He J, Li N, Li J, Xu S, Zhu Y, Chen X, Zhu R. Continuous surface Z-Scheme and Schottky heterojunction Au/La2Ti2O7/Ag3PO4 catalyst with boosted charge separation through dual channels for excellent photocatalysis: Highlight influence factors regulation and catalytic system applicability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Wang Q, Li N, Tan M, Deng M, Yang G, Li Q, Du H. Novel dual Z-scheme Bi/BiOI-Bi2O3-C3N4 heterojunctions with synergistic boosted photocatalytic degradation of phenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Tan L, Chen Y, Li D, Wang S, Ao Z. WSe 2/g-C 3N 4 for an In Situ Photocatalytic Fenton-like System in Phenol Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3089. [PMID: 36144876 PMCID: PMC9501952 DOI: 10.3390/nano12183089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
An in situ photo-Fenton system can continuously generate H2O2 by photocatalysis, activating H2O2 in situ to form strong oxidizing ·OH radicals and degrading organic pollutants. A WSe2/g-C3N4 composite catalyst with WSe2 as a co-catalyst was successfully synthesized in this work and used for in situ photo-Fenton oxidation. The WSe2/g-C3N4 composite with 7% loading of WSe2 (CNW2) has H2O2 production of 35.04 μmol/L, which is fourteen times higher than pure g-C3N4. The degradation efficiency of CNW2 for phenol reached 67%. By constructing an in situ Fenton-system, the phenol degradation rate could be further enhanced to 90%. WSe2 can enhance the catalytic activity of CNW2 by increasing electron mobility and inhibiting the recombination of photogenerated electron-hole pairs. Moreover, the addition of Fe2+ activates the generated H2O2, thus increasing the amount of strong oxidative ·OH radicals for the degradation of phenol. Overall, CNW2 is a promising novel material with a high H2O2 yield and can directly degrade organic pollutants using an in situ photo-Fenton reaction.
Collapse
Affiliation(s)
- Li Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiming Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhimin Ao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|