1
|
Zhang R, Liu J, Liu Z, Duan X, Yu F, Wang Y, Yuan D, Jiang H, Liu Y. Flexible self-standing amidoxime-functionalized MXene membrane for electrochemical uranium extraction. J Colloid Interface Sci 2025; 679:547-554. [PMID: 39467366 DOI: 10.1016/j.jcis.2024.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The presence of radioactive U(VI) ions in sewage poses a significant threat to both the ecological environment and human health. In recent years, an electricity-driven remediation strategy has emerged as aprominent technique for the elimination of radionuclides. Specifically, the square wave transformation method is an emerging technology for electrochemical separation and enrichment of uranium. It offers several merits, such as high extraction capacity, facile recovery of products, and effective suppression of water decomposition. However, conventional electrodes typically require the utilization of adhesives, which severely restricts their adsorption performance. In this study, we fabricated a self-supporting membrane electrode based on amidoxime-functionalized Ti3C2Tx MXene (TCP) for efficient extraction of uranium from radioactive solutions. The polyamidoxime (PAO) is incorporated into the interlayer of Ti3C2Tx through non-covalent bonds, leading to an increase in interlayer spacing and specific surface area while also providing an abundance of specific binding sites. Notably, by applying an alternating current (AC) voltage ranging from -5 to 0 V, uranyl ions can migrate and concentrate onto TCP membrane, achieving an exceptional extraction capacity of 2809 mg/g. Further characterization confirmed that the captured uranium(VI) was reduced to U(V), and then the unstable U(V) was re-oxidized to U(VI), eventually generating Na2O7U22 precipitates in the presence of Na+. Considering its remarkable electro-extraction performance and convenient preparation process, the TCP membrane electrode is regarded as a promising candidate for U(VI) extraction from wastewater.
Collapse
Affiliation(s)
- Ruiming Zhang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Juan Liu
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang 330002, Jiangxi, China
| | - Zhirong Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Xinyi Duan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Fengtao Yu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yun Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Dingzhong Yuan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Hao Jiang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yan Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
2
|
Tian Z, Chee TS, Hao Y, Kang K, Yang X, Xiao C. Hollow Bismuth-Based Nanoreactor with Ultrathin Disordered Mesoporous Silica Shell for Superior Radioactive Iodine Decontamination. CHEM & BIO ENGINEERING 2024; 1:548-558. [PMID: 39974602 PMCID: PMC11835275 DOI: 10.1021/cbe.4c00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 02/21/2025]
Abstract
The effective removal of radioactive iodine under harsh high-temperature conditions, akin to those encountered in real spent nuclear fuel reprocessing, remains a formidable challenge. Herein, a novel bismuth-based mesoporous silica nanoreactor with a distinctive hollow yolk-shell structure was successfully synthesized by using silica-coated Bi2O3 as a hard template and alkaline organic ammonia for etching (Bi@HMS-1, HMS = hollow mesoporous silica). In contrast to conventional inorganic alkali-assisted methods with organic template agents, our approach yielded a material with thinner and more disordered shell layers, along with a relatively smaller pore volume. This led to a significant reduction in the physisorption of Bi@HMS-1 onto iodine while maintaining a smooth passage of guest iodine molecules into and out of the shell channels. Consequently, the resulting sorbent exhibited an outstanding iodine sorption capacity at high temperatures, achieving a chemisorption percentage as high as 96.5%, which makes it extremely competitive among the currently reported sorbents.
Collapse
Affiliation(s)
- Zhenjiang Tian
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Tien-Shee Chee
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yuxun Hao
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Kang Kang
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaofan Yang
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chengliang Xiao
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| |
Collapse
|
3
|
Wang S, Zhang P, Ma E, Chen S, Li Z, Yuan L, Zu J, Wang L, Shi W. Molten salt synthesis of MXene-derived hierarchical titanate for effective strontium removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134079. [PMID: 38521042 DOI: 10.1016/j.jhazmat.2024.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The removal and recovery of radioactive Sr(II) from wastewater and seawater has been of great concern due to the negative environmental impacts of nuclear energy development and the potential risk of nuclear accidents. Herein, a facile molten salt synthesis strategy was developed to systematically investigated the reaction of different types of MXenes with nitrates. Among the products, K+ intercalated hierarchical titanate nanostructures (K-HTNs) obtained from the direct chemical transformation of multilayered Ti3C2Tx exhibited unique layered structures, good physicochemical properties, and outstanding adsorption performance for Sr(II). The maximum adsorption capacity of Sr(II) by K-HTNs reached 204 mg·g-1 at ambient temperature, and the good regeneration and reusability of the titanate was also demonstrated. K-HTNs showed preferential selectivity for Sr(II) in different environmental media containing competing ions, and the removal efficiency of Sr(II) in real seawater was as high as 93.3 %. The removal mechanism was elaborated to be the exchange of Sr2+ with K+/H+ in the interlayers of K-HTNs, and the adsorbed Sr(II) had a strong interaction with Ti-O- termination on the titanate surface. Benefiting from the merits of rapid and scalable synthesis and excellent adsorption performance, MXene-derived K-HTNs have broad application prospects for the purification of 90Sr-contaminated wastewater and seawater.
Collapse
Affiliation(s)
- Siyi Wang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000,China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000,China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Enzhao Ma
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Suwen Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000,China
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Zu
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Tian Z, Hao Y, Chee TS, Cai H, Zhu L, Duan T, Xiao C. Hollow Core-Shell Bismuth Based Al-Doped Silica Materials for Powerful Co-Sequestration of Radioactive I 2 and CH 3I. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308451. [PMID: 38059738 DOI: 10.1002/smll.202308451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1, respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.
Collapse
Affiliation(s)
- Zhenjiang Tian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tien-Shee Chee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - He Cai
- Department of Earth and Environmental Sciences, The University of Manchester, 176 Oxford Rd, Manchester, M13 9QQ, UK
| | - Lin Zhu
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Tao Duan
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
5
|
Wu Q, Hao H, Liu Y, Sha LT, Wang WJ, Shi WQ, Wang Z, Yan ZY. Selective Separation of Americium(III), Curium(III), and Lanthanide(III) by Aqueous and Organic Competitive Extraction. Inorg Chem 2024; 63:462-473. [PMID: 38141022 DOI: 10.1021/acs.inorgchem.3c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Adding hydrophilic ligands into aqueous solutions for the selective binding of actinides(III) is acknowledged as an advanced strategy in Ln(III)/An(III) separation. In view of the recycling and radioactive waste disposal of the minor actinide, there remains an urgent need to design and develop the appropriate ligand for selective separation of An(III) from Ln(III). Herein, four novel hydrophilic ligands with hard-soft hybrid donors, derived from the pyridine and phenanthroline skeletons, were designed and synthesized as masking agents for selective complexation of An(III) in the aqueous phase. The known N,N,N',N'-tetraoctyl diglycolamide (TODGA) was used as lipophilic extractant in the organic phase for extraction of Ln(III), and a new strategy for the competitive extraction of An(III) and Ln(III) was developed based on TODGA and the above hydrophilic ligands. The optimal hydrophilic ligand of N,N'-bis(2-hydroxyethyl)-2,9-dicarboxamide-1,10-phenanthroline (2OH-DAPhen) displayed exceptional selectivity toward Am(III) over Ln(III), with the concentrations of HNO3 ranging from 0.05 to 3.0 M. The maximum separation factors were up to 1365 for Eu/Am, 417.66 for Eu/Cm, and 42.38 for La/Am. The coordination mode and bonding property of 2OH-DAPhen with Ln(III) were investigated by 1H NMR titration, UV-vis spectrophotometric titration, luminescence titration, FT-IR, ESI-HRMS analysis, and DFT calculations. The results revealed that the predominant species formed in the aqueous phase was a 1:1 ligand/metal complex. DFT calculations also confirmed that the affinity of 2OH-DAPhen for Am(III) was better than that for Eu(III). The present work using a competitive extraction strategy developed a feasible alternative method for the selective separation of trivalent actinides from lanthanides.
Collapse
Affiliation(s)
- Qiang Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huaixin Hao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
| | - Lei-Tao Sha
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei-Jia Wang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ze-Yi Yan
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
6
|
Chandra K, Proshad R, Dey HC, Idris AM. A review on radionuclide pollution in global soils with environmental and health hazards evaluation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9245-9266. [PMID: 37578560 DOI: 10.1007/s10653-023-01725-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Human populations are being exposed to a wide spectrum of radiation from soils as a result of the availability of radiation sources. Assessing the ecological and health effects of radionuclides in soils is crucial to support the optimal soil management practices but large-scale studies are limited. This study compiled data on radionuclides (226Ra, 232Th, 40K, 238U, and 137Cs) in soils located across the world (44 countries and 159 places) between 2008 and 2022 and applied radiological hazards indices and several multivariate statistical approaches. The average activity concentration (Bq/kg) of 226Ra, 232Th, 40K, 238U, and 137Cs were 408.56, 144.80, 508.78, 532.78, and 83.12, respectively, whereas 226Ra, 232Th, 40K, and 238U exceeded the standard limits. The principal component analysis explained more than 91% of variation in soils. Based on the geoaccumulation index, 40K posed moderately to heavy contamination whereas 238U and 226Ra posed moderate contamination in soils. Moreover, the mean values of radiological hazards evaluation such as radium equivalent activity (487.17 Bq/kg), external radiation hazard indices (1.32), internal hazard indices (2.15), absorbed dose rate (247.86 nGyh-1), annual effective dose rate (1.82 mSvy-1), activity utilization index (4.54) and excess lifetime cancer risk (63.84 × 10-4) were higher than recommended limit suggesting significant radiological risks in study region soils. The findings indicated that the study area soils were contaminated by radionuclides and unsafe for hazards in terms of the health risks linked with studied radioactive contents. The study is valuable for mapping radioactivity across the globe to determine the level of radioactivity hazards.
Collapse
Affiliation(s)
- Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| |
Collapse
|
7
|
Ni S, Gao Y, Yu G, Zhang S, Zeng Z, Sun X. A sustainable strategy for targeted extraction of thorium from radioactive waste leachate based on hydrophobic deep eutectic solvent. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132465. [PMID: 37703731 DOI: 10.1016/j.jhazmat.2023.132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
In this work, the new hydrophobic deep eutectic solvents (HDESs) based on 2-hexyldecanoic acid (HDA) as a hydrogen bond donor (HBD) were used to selectively enrich trace Th from radioactive waste leach solution. These HDESs are characterized by low toxicity, bio-friendliness, low viscosity and sufficient hydrophobicity. Compared with Al, Mg, Ca and RE, HDESs exhibited exceptional selectivity for Th extraction, along with high loading capacity, easy stripping and stable reusability. The mechanism of Th extraction by the HDES is a cation exchange reaction. Based on the thymol (TL):HDA (1:3) HDES, a short flow closed-loop recovery process of Th in the leach solution of radioactive waste residue was developed. After a single-step extraction, the extraction percentage (E%) of Th exceeded 98.0%, while the E% of other elements was less than 0.14%. After stripping, the concentration of Th in the concentrated solution reached 2.16 × 103 mg/L with a purity of 74.2%, which could be directly used for subsequent purification. By adjusting the pH to 4.00, the raffinate was used as a feed solution for RE elements recovery. The HDES-based extraction strategy for Th is simple, safe, efficient and environmentally friendly, providing a new idea for the recovery of radioactive waste residues.
Collapse
Affiliation(s)
- Shuainan Ni
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Guisu Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Sijia Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China
| | - Zhiyuan Zeng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoqi Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
8
|
Kang K, Li L, Zhang M, Miao X, Lei L, Xiao C. Two-Fold Interlocking Cationic Metal-Organic Framework Material with Exchangeable Chloride for Perrhenate/Pertechnetate Sorption. Inorg Chem 2022; 61:11463-11470. [PMID: 35833914 DOI: 10.1021/acs.inorgchem.2c01846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Albeit reported substantial sorbents for elimination of TcO4-, the issue of secondary contamination caused by released counterions (such as NO3-) from the cationic metal-organic framework (MOF) has not come into the sufficient limelight for researchers. Herein, our efforts are dedicated to settle the matter through synthesis of NiCl2 based on the cationic MOF (ZJU-X4). Less harmful chlorides are used as exchangeable anions for replacing hazardous anions. Notably, ZJU-X4 exhibited fast sorption kinetics, high sorption capacity of 395 mg/g, decent selectivity, and excellent reusability in four recycles. The results of ion chromatography revealed that the released chloride ion was equal to sorption of target ions, and pair distribution functions were employed to analyze the changes in ZJU-X4 after sorption of ReO4-, clearly elucidating the anion-exchange mechanism. Furthermore, in the dynamic sorption experiments, ReO4- could be facilely and effectively removed and recovered, showing the value of practical applications. This work indicated that cationic MOF-based metal chloride salts would be a better choice for anionic sorbents.
Collapse
Affiliation(s)
- Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|