1
|
Liu X, Shen Z, Guan Y, Jiang Z, Zhao W. Z-scheme H 5PMo 10V 2O 40/g-C 3N 4 heterojunction with strong photooxidative capacity for promoting efficient cleavage of C α-C β bond in lignin models and lignin. Int J Biol Macromol 2025; 288:138709. [PMID: 39672400 DOI: 10.1016/j.ijbiomac.2024.138709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The efficient photocatalytic breakage of Cα-Cβ bonds has great significance for the valorization of lignin into value-added aromatic chemicals, but remains challenging owing to their demanding depolymerization conditions and high bond dissociation energies. In this study, the Z-scheme heterojunction H5PMo10V2O40/g-C3N4 (HPA/CN) photocatalyst was elaborately developed for the selective and efficient cleaving of Cα-Cβ bonds in real lignin and its β-O-4 models under mild conditions. The construction of Z-scheme heterojunction with irregular sheet micromorphology not only enhanced the charge separation and redox abilities, but also broadened the light absorption range and promoted charge-to-surface transfer in two redox components. Notably, 35 % HPA/CN could completely convert the 2-phenoxy-1-phenylethanol with Cα-Cβ bond cleavage selectivity of 97.4 %, achieving approximately 50.0- and 2.2-times higher conversion rates compared to HPA and CN, respectively. Meanwhile, this strategy also offered a wide substrate scope containing various β-O-4 model compounds and native lignin, leading to the generation of corresponding aromatics. The mechanism experiments revealed that photoinduced holes and superoxide radicals synergistically triggered the oxidative cleavage of Cα-Cβ bond. This study could provide a reference for photocatalytic production of value-added aromatic monomers by exploiting both renewable feedstocks and solar energy.
Collapse
Affiliation(s)
- Xutang Liu
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Zhen Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yinshuang Guan
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Zhijie Jiang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Wei Zhao
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
2
|
Pei Z, Liu X, Chen J, Wang H, Li H. Research Progress on Lignin Depolymerization Strategies: A Review. Polymers (Basel) 2024; 16:2388. [PMID: 39274021 PMCID: PMC11397036 DOI: 10.3390/polym16172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As the only natural source of aromatic biopolymers, lignin can be converted into value-added chemicals and biofuels, showing great potential in realizing the development of green chemistry. At present, lignin is predominantly used for combustion to generate energy, and the real value of lignin is difficult to maximize. Accordingly, the depolymerization of lignin is of great significance for its high-value utilization. This review discusses the latest progress in the field of lignin depolymerization, including catalytic conversion systems using various thermochemical, chemocatalytic, photocatalytic, electrocatalytic, and biological depolymerization methods, as well as the involved reaction mechanisms and obtained products of various protocols, focusing on green and efficient lignin depolymerization strategies. In addition, the challenges faced by lignin depolymerization are also expounded, putting forward possible directions of developing lignin depolymerization strategies in the future.
Collapse
Affiliation(s)
- Zhengfei Pei
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaofang Liu
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jiasheng Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Huan Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Suo C, Li W, Luo S, Ma C, Liu S. Multisite photocatalytic depolymerization of lignin model compound utilizing full-spectrum light over magnetic microspheres. iScience 2023; 26:108167. [PMID: 37920663 PMCID: PMC10618704 DOI: 10.1016/j.isci.2023.108167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Photocatalytic depolymerization is a high value-added approach for utilization of lignin. In this study, magnetic microspheres of FeCoRu@SiO2-TiO2 were synthesized by a co-precipitation method. Doping with CoOx and RuOx was used to improve the response to visible light, and doping with TiO2 was used to improve the response to ultraviolet light (λ < 380 nm). The lignin model compound depolymerization rate was >90%. The electron paramagnetic resonance results showed that the reaction occurred in two steps (aerobic phase and oxygen-free phase). Most of the O2- was produced in the first step by cleavage of C-O bonds. The second step was inhibited in an oxygen-free atmosphere. This research provides a valid method for enhancing the photocatalytic properties using full-spectrum light and exploring the lignin photocatalytic depolymerization mechanism. Further research is required to develop the catalyst properties and performance to produce radicals.
Collapse
Affiliation(s)
- Chengcheng Suo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Xu X, Dai S, Xu S, Zhu Q, Li Y. Efficient Photocatalytic Cleavage of Lignin Models by a Soluble Perylene Diimide/Carbon Nitride S-Scheme Heterojunction. Angew Chem Int Ed Engl 2023; 62:e202309066. [PMID: 37675642 DOI: 10.1002/anie.202309066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
3,4,9,10-Perylenetetracarboxylic dianhydride (PDI) is one of the best n-type organic semiconductors and an ideal light-driven catalyst for lignin depolymerization. However, the charge localization effect and the excessively strong intermolecular aggregation trend in PDI result in rapid electron-hole (e- -h+ ) recombination, which limits photocatalytic performance. Herein, polymeric carbon nitride/polyhedral oligomeric silsesquioxane PDI (p-CN/P-PDI) S-scheme heterojunction photocatalyst was prepared by the solvent evaporation-deposition method for C-C bond selective cleavage of lignin β-O-4 model. Based on the material characterization results, the synergic role of polyhedral oligomeric silsesquioxane (POSS) and S-scheme heterojunction maintains appropriate aggregation domains, achieves better solar light utilization, faster charge-transfer efficiency, and greater redox capacity. Notably, the 3 % p-CN/P-PDI heterostructure exhibits a remarkable enhancement in cleavage conversion efficiency, achieving approximately 16.42 and 2.57 times higher conversion rates compared to polyhedral oligomeric silsesquioxane modified PDI (POSS-PDI) and polymeric carbon nitride (p-CN), respectively.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Shuqi Dai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Shuai Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Qi Zhu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Yuliang Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| |
Collapse
|
5
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Guo H, Zhao Y, Chang JS, Lee DJ. Lignin to value-added products: Research updates and prospects. BIORESOURCE TECHNOLOGY 2023; 384:129294. [PMID: 37311532 DOI: 10.1016/j.biortech.2023.129294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Due to the urgent need for renewable and clean energy, the efficient use of lignin is of wide interest. A comprehensive understanding of the mechanisms of lignin depolymerization and the generation of high-value products will contribute to the global control of the formation of efficient lignin utilization. This review explores the lignin value-adding process and discusses the link between lignin functional groups and value-added products. Mechanisms and characteristics of lignin depolymerization methods are presented, and challenges and prospects for future research are highlighted.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
7
|
Xu X, Li P, Zhong Y, Yu J, Miao C, Tong G. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol 2023:125203. [PMID: 37270116 DOI: 10.1016/j.ijbiomac.2023.125203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Vanillin plays an important role not only in food and flavouring, but also as a platform compound for the synthesis of other valuable products, mainly derived from the oxidative decarboxylation of petroleum-based guaiacol production. In order to alleviate the problem of collapsing oil resources, the preparation of vanillin from lignin has become a good option from the perspective of environmental sustainability, but it is still not optimistic in terms of vanillin production. Currently, catalytic oxidative depolymerization of lignin for the preparation of vanillin is the main development trend. This paper mainly reviews four ways of preparing vanillin from lignin base: alkaline (catalytic) oxidation, electrochemical (catalytic) oxidation, Fenton (catalytic) oxidation and photo (catalytic) oxidative degradation of lignin. In this work, the working principles, influencing factors, vanillin yields obtained, respective advantages and disadvantages and the development trends of the four methods are systematically summarized, and finally, several methods for the separation and purification of lignin-based vanillin are briefly reviewed.
Collapse
Affiliation(s)
- Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Li Z, Li D, Zhong L, Li X, Liu C, Peng X. Base-free selective oxidation of monosaccharide into sugar acid by surface-functionalized carbon nanotube composites. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Huang M, Guo H, Zeng Z, Xiao H, Hu H, He L, Li K, Liu X, Yan L. Selective Photocatalytic Transformation of Lignin to Aromatic Chemicals by Crystalline Carbon Nitride in Water-Acetonitrile Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15707. [PMID: 36497780 PMCID: PMC9736535 DOI: 10.3390/ijerph192315707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The photocatalytic conversion of lignin to aromatic compounds in aqueous solutions is a promising approach. We herein report a crystalline carbon nitride prepared by high-temperature thermal polymerization and alkali-metal molten salt treatment, which was then applied in the selective conversion of lignin to aromatic compounds. The results showed that the tri-s-tri-C3N4 presented a relatively high activity and selectivity for the conversion of lignin in aqueous solutions. In a 95% water-acetonitrile solution, it achieved a relatively high conversation rate of lignin, reaching 62.00%, and the selectivity of the C-C bond cleavage was high, at 86.8%. The characterization results obtained by TEM, UV-vis/DRS, PL, and transient photocurrent response showed that the ultra-high activity of tri-s-tri-C3N4 was mainly due to the improvements in crystallinity and light absorption. Mechanism studies showed that the dispersion of the catalyst and the combination of lignin and catalyst in aqueous solvents with different acetonitrile ratios were the main factors affecting lignin conversion. As the water content in the solutions increased, the primary active sites were converted from h+ to ·O2-. This study revealed the interactions between lignin, photocatalysts, and reaction solutions, providing a theoretical basis for the photocatalytic conversion of lignin in aqueous solutions.
Collapse
Affiliation(s)
- Meirou Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhenxing Zeng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Xiao
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liu He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Kexin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoming Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liushui Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|