1
|
Liang YC, Zhang SF, Cao Q, Jiang LY, Jiao YF, Wang Y, Zhang HL, Wang HY, Shan CX, Kuang LM, Jing H, Liu KK. Phosphorescent Elastomer through Carbon Nanodots Microphase Engineering for Diverse Applications. NANO LETTERS 2025; 25:8713-8722. [PMID: 40384215 DOI: 10.1021/acs.nanolett.5c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Stretchable phosphorescent elastomers possess great potential in flexible devices and wearable electronics. However, traditional room-temperature phosphorescent (RTP) materials exhibit poor stretchability, thereby presenting a challenge in reconciling the contradiction between RTP performance and stretchability. Here, we present carbon nanodots (CNDs) microphase engineering strategy that integrates CNDs with rigid microconfinement within a flexible matrix, demonstrating phosphorescent elastomers with high performance. The resultant elastomers exhibit a maximum stretchability of up to 97% and a phosphorescence lifetime of up to 1119 ms. Subsequently, the universality of this approach is further demonstrated by tuning the phosphorescence wavelength across the visible-light range. These elastomers maintain stable optical properties under diverse and complex conditions. Potential applications, including 3D art, anticounterfeiting, and flexible displays, showcase the versatility of this design. This work provides a new pathway for designing stretchable phosphorescent elastomers and expands the application potential of phosphorescent materials.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Si-Fan Zhang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Feng Jiao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan Wang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui-Lai Zhang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hai-Yan Wang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Feng J, Wen Y, Yang W, Hu X, Xu Y, Fang Z. Construction of an interpenetrating polymer network in situ to develop multifunctional cellulose nanofiber-enhanced films with superior mechanical performances. Int J Biol Macromol 2025; 304:140857. [PMID: 39933673 DOI: 10.1016/j.ijbiomac.2025.140857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
The development of biodegradable films with enhanced mechanical performance is of great importance for environmental concerns. Inspired by the unique multiple hydrogen bonding of spider silk, in this work, we developed a tough polyvinyl alcohol (PVA)-based, TEMPO-oxidized cellulose nanofibers (TOCNF)-enhanced film with outstanding stretchability, mechanical strength, fatigue resistance, and biodegradability by constructing an interpenetrating polymer network (IPN) with abundant hydrogen bonds via a combination of in situ radical-crosslinking and solvent casting method. The film incorporated 1 wt% of TOCNF, namely P/A-TCF1, exhibits excellent biodegradability, outstanding elongation (470 %), significant toughness (143 MJ/m3), healable efficiency (90 %) and high tensile strength (45 MPa), surpassing the performance of a vast of commercially-available films. Importantly, the P/A-TCF1 film can withstand 5000 actual 180° folds without causing any structural damage, and the tensile strength remains almost 90 % of its original value. This strategy provides a novel approach for exploring exceptional fold-resistant films.
Collapse
Affiliation(s)
- Jiao Feng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China.
| | - Wenmin Yang
- Bureau of Integrated Administrative Enforcement, No. 398, Daji Rd, Binzhou 251700, China
| | - Xianghua Hu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Yecheng Xu
- Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China
| | - Zhen Fang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China.
| |
Collapse
|
3
|
Zhang Q, Li X, Yu L, Wang L, Wen Z, Su P, Sun Z, Wang S. Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions. J Environ Sci (China) 2025; 149:68-78. [PMID: 39181678 DOI: 10.1016/j.jes.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 08/27/2024]
Abstract
The presence of aluminum (Al3+) and fluoride (F-) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F-) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nmol/L. Subsequently, in the presence of F- ions, fluorescence is quenched, with a detection limit of 47.6 nmol/L. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin Li
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Long Yu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Lingxiao Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhiqing Wen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Pengchen Su
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
4
|
Li D, Chen H, Zheng Y, Zhou S, Yong F, Zhang X, Wang K, Wen H, Wu J, Xue W, Huang S. Mo-doped carbon-dots nanozyme with peroxide-like activity for sensitive and selective smartphone-assisted colorimetric S 2- ion detection and antibacterial application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125274. [PMID: 39426130 DOI: 10.1016/j.saa.2024.125274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Sulfur ion (S2-) plays a significant and considerable role in many living organisms and ecosystems, while its abnormal content can pose a serious hazard to human health and ecological environment. Hence, it is extremely meaningful to construct a highly sensitive and selective analytical platform for S2- detection in complex microenvironment, particularly in biological systems. In this study, phosphomolybdic acid and L-Arg were utilized to prepare a new molybdenum doped carbon-dots nanozyme (Mo-CDs) with great peroxidase-like activity by one-step hydrothermal approach. In the presence of H2O2, Mo-CDs converted 3,3',5,5'-tetramethyl benzidine (TMB) into blue oxTMB, but S2- strongly reduced the blue solution to colorless and then brown, which established significant selectivity toward S2-. Mo-CDs illustrated a wide linear range (2.5 μM-900 μM) and low detection limit (LOD = 76 nM) by ultraviolet and smartphone-assisted visualized colorimetric analysis. Especially, the smartphone-assisted analysis platform successfully realized quick, portable, sensitive and visible identification of S2- with high recovery (95.7-106.7 %) and excellent specificity in water samples. More importantly, Mo-CDs was developed to antibacterial applications based on good peroxidase-like activity. This research not only constructed a new and efficient carbon-dots nanozyme and a low-cost, portable, visual analysis platform for real-time detection of S2-, but also proposed a novel design strategy and methodology for exploiting multifunctional nanozyme detection tool with great practical application.
Collapse
Affiliation(s)
- Dai Li
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Huajie Chen
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Yutao Zheng
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Sheng Zhou
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Fengyuan Yong
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Xiangbo Zhang
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Kui Wang
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Zhou C, Tian Q, Ding Q, Qu L, Wang K, Tang H, Yang C. Photoinduced On and Off Polymeric Room Temperature Phosphorescence Based On Polycyclic Aromatic Hydrocarbon Isomers. Chemistry 2024; 30:e202403326. [PMID: 39343748 DOI: 10.1002/chem.202403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
As family members of polycyclic aromatic hydrocarbons, compound anthracene (Ant) and phenanthrene (Phe) as isomers are widely used in organic optical materials and electronic materials. But their photochemical and physical properties are very different. In this work, the room temperature phosphorescence (RTP) properties of PVA-B-Ant and PVA-B-Phe are discussed carefully which are prepared by B-O click reaction through polyvinyl alcohol (PVA) with 9-anthraceneboronic acid (B-Ant) and 9-phenanthrenylboronic acid (B-Phe), respectively. PVA-B-Phe 1 % film exhibits excellent fluorescence (FL) emission at 374 nm and RTP emission at 523 nm with green afterglow and around 1.9 s phosphorescence lifetime. However, PVA-B-Ant 1 % film only shows strong blue FL emission at 414 nm, and the emission intensity decreases seriously with the extension of irradiation time. Experimental and theoretical calculations results suggest that the photodimer of Ant which is formed in PVA matrix under the UV light irradiation would be competitive with the process of RTP emission. This work demonstrates that the RTP properties of organic molecules might be probably affected by the photostability of the organic phosphor under UV irradiation.
Collapse
Affiliation(s)
- Chenglin Zhou
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| | - Quanchi Tian
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| | - Qiuyue Ding
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| | - Kaiti Wang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| | - Hailong Tang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China
| |
Collapse
|
6
|
Duan L, Zheng Q, Liang Y, Tu T. From Simple Probe to Smart Composites: Water-Soluble Pincer Complex With Multi-Stimuli-Responsive Luminescent Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409620. [PMID: 39300862 DOI: 10.1002/adma.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Water-soluble smart materials with multi-stimuli-responsiveness and ultra-long room-temperature phosphorescence (RTP) have garnered broad attention. Herein, a water-soluble terpyridine zinc complex (MeO-Tpy-Zn-OAc), featuring a simple donor-π-acceptor (D-π-A) structure is presented, which responds to a variety of stimuli, including changes in solvents, pH, temperature, and the addition of amino acids. Notably, MeO-Tpy-Zn-OAc functions as a fluorescence probe, capable of visually and selectively discriminating aspartate or histidine among other common amino acids in water. Additionally, when incorporated into polyvinyl alcohol (PVA) to form the composite MeO-Tpy-Zn-OAc@PVA, the material exhibits reversible writing, photochromism, and a prolonged RTP with a 14 s afterglow. These unique properties enable the composite to be utilized in potential applications such as secure data encryption and inkless printing.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Liang
- Forensic Science Institute of Shanghai Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai, 200083, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Zhang Y, Wu X, Liu S, Ma Y, Zhao Q. Unveiling the potential of triphenylphosphine salts in tuning organic room temperature phosphorescence. Chem Commun (Camb) 2024; 60:9328-9339. [PMID: 39113543 DOI: 10.1039/d4cc03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Triphenylphosphine (TPP) salt derivatives, with their rich chemistry of core-substitution, have emerged as promising candidates for ultralong room temperature phosphorescence (RTP) materials owing to their distinct molecular structures, high quantum efficiency and exceptional phosphorescence properties. This feature article highlights the vast potential of TPP salt derivatives in tunable RTP properties by exploring some factors such as the alkyl chains, halogen anions, through-space charge transfer states, etc., and recent advancements in multi-level information encryption, high-level anticounterfeiting tags and X-ray imaging applications. We anticipate that this article will assist in directing future analyses based on the mechanisms underlying the RTP behavior of TPP derivatives and offer guidance for the rational design of high-performance RTP materials.
Collapse
Affiliation(s)
- Yuxia Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Xiaomei Wu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Shujuan Liu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Yun Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Song X, Zhai X, Zeng Y, Wang G, Wang T, Li Y, Yan Q, Chan CY, Wang B, Zhang K. Polymer-Based Room-Temperature Phosphorescence Materials Exhibiting Emission Lifetimes up to 4.6 s Under Ambient Conditions. Chemphyschem 2024:e202400522. [PMID: 39143702 DOI: 10.1002/cphc.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
The long-emission-lifetime nature of room-temperature phosphorescence (RTP) materials lays the foundation of their applications in diverse areas. Despite the advantage of mechanical property, processability and solvent dispersity, the emission lifetimes of polymer-based room-temperature phosphorescence materials remain not particularly long because of the labile nature of organic triplet excited states under ambient conditions. Specifically, ambient phosphorescence lifetime (τP) longer than 2 s and even 4 s have rarely been reported in polymer systems. Here, luminescent compounds with small phosphorescence rate on the order of approximately 10-1 s-1 are designed, ethylene-vinyl alcohol copolymer (EVOH) as polymer matrix and antioxidant 1010 to protect organic triplets are employed, and ultralong phosphorescence lifetime up to 4.6 s under ambient conditions by short-term and low-power excitation are achieved. The resultant materials exhibit high afterglow brightness, long afterglow duration, excellent processability into large area thin films, high transparency and thermal stability, which display promising anticounterfeiting and data encryption functions.
Collapse
Affiliation(s)
- Xiaoqing Song
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xiangxiang Zhai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Ying Zeng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Guangming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Tengyue Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yufang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Qianqian Yan
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Chin-Yiu Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, China
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke creation center of new materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
9
|
Zhou L, Song J, He Z, Liu Y, Jiang P, Li T, Ma X. Achieving Efficient Dark Blue Room-Temperature Phosphorescence with Ultra-Wide Range Tunable-Lifetime. Angew Chem Int Ed Engl 2024; 63:e202403773. [PMID: 38527962 DOI: 10.1002/anie.202403773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Tunable-lifetime room-temperature phosphorescence (RTP) materials have been widely studied due to their broad applications. However, only few reports have achieved wide-range lifetime modulation. In this work, ultra-wide range tunable-lifetime efficient dark blue RTP materials were realized by doping methyl benzoate derivatives into polyvinyl alcohol (PVA) matrix. The phosphorescence lifetimes of the doped films can be increased from 32.8 ms to 1925.8 ms. Such wide range of phosphorescence lifetime modulation is extremely rare in current reports. Moreover, the phosphorescence emission of the methyl 4-hydroxybenzoate-doped film is located in the dark blue region and the phosphorescence quantum yield reaches as high as 15.4 %, which broadens their applications in organic optoelectronic information. Further studies demonstrated that the reason for the tunable lifetime was that the magnitude of the electron-donating ability of the substituent group modulates the HOMO-LUMO and singlet-triplet energy gap of methyl benzoate derivatives, as well as the ability to non-covalent interactions with PVA. Moreover, the potential applications of luminescent displays and optical anti-counterfeiting of these high-performance dark blue RTP materials have been conducted.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jinming Song
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhenyi He
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Yiwei Liu
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ping Jiang
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Tao Li
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiang Ma
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
10
|
Meng X, Wang J, Yang Z, Liu Z, Zhang Z, He S, Li C. Construction of smartphone-adapted signal visualization platform for dual-mode detection of H 2S based on integrated metal-organic framework nanoprobes. Talanta 2024; 270:125517. [PMID: 38091744 DOI: 10.1016/j.talanta.2023.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024]
Abstract
Hydrogen sulfide (H2S) is a toxic contaminant and has great influence on many physiological processes. Due to various pathophysiological roles and environmental pollution problems, it is necessary to construct and develop simple and portable monitoring sensors for the precise detection of H2S. Herein, we developed a smartphone-adapted dual-mode detection platform by integrating the colorimetric and photothermal imaging analysis into a metal-organic framework-based chip (ZIF-8/Cu). Due to the nanoconfinement effect of ZIF-8, small-sized plasmonic CuS could be in-situ formed during the detection procedure of H2S and endowed the chips with excellent photothermal properties. By constructing a smartphone-adapted photothermal imager, the metal-organic framework-based chip could achieve a portable photothermal imaging analysis of H2S. Moreover, as the formed CuS was a good peroxidase-like nanozyme, the chips could also be used to trigger the enzymic catalytic reaction toward the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2, thus providing another colorimetric sensing mode by using a smartphone App. In this smartphone-adapted visualization platform, the portable chemosensors could simultaneously achieve double detection modes at one electrode, which provided a new pathway for the accurate detection of H2S and circumvented the false-positive or negative errors during the detection process. Besides, by using the finite difference time domain (FDTD) simulation method, the in-depth mechanism, including the plasmonic effect and spatial electromagnetic field distribution, was explored to provide a possible reason for the excellent sensing performance of the dual-mode visualization platform. This work provides a new insight into the construction of the accurate, portable and smart sensing platform in the visual screening of H2S.
Collapse
Affiliation(s)
- Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jing Wang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhen Yang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhiguo Liu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zongrui Zhang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China.
| |
Collapse
|
11
|
Wang D, Yu L, Li X, Lu Y, Niu C, Fan P, Zhu H, Chen B, Wang S. Intelligent quantitative recognition of sulfide using machine learning-based ratiometric fluorescence probe of metal-organic framework UiO-66-NH 2/Ppix. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132950. [PMID: 37952335 DOI: 10.1016/j.jhazmat.2023.132950] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Sulfides possess either high toxicity or play crucial physiological role such as gas transmitter dependent upon dosage, hence the significant for their rapid sensitive and selective concentration determination. Herein, a machine learning enhanced ratiometric fluorescence sensor was engineered for sulfide determination by incorporating the nanometal-organic framework (UiO-66-NH2) along with protoporphyrin IX (Ppix). The blue fluorescence at 431 nm originated from the moiety of UiO-66-NH2 by 365 nm excitation serves as an internal calibration reference signal, while the red fluorescence at 629 nm from the moiety of Ppix serves as the analytical signal, and the intensity is correlated to the amount of sulfides. The fluorescence color of the sensor gradually varies from blue to red upon sequential addition of copper and sulfide ions, resulting in RGB (Red, Green, Blue) feature values for corresponding sulfide concentrations, which facilities the advanced data processing techniques using machine learning algorithms. On the basis of fluorescence image fingerprint extraction and machine learning algorithms, an online data analysis model was developed to improve the precision and accuracy of sulfide determination. The established model employed Linear Discriminant Analysis (LDA) and was subjected to rigorous cross-validation to ensure its robustness. By analyzing the correlation between RGB feature values and sulfide concentrations, the study highlighted a significant positive relationship between the red feature values and sulfide concentrations. The application of machine learning techniques on the ratiometric fluorescence signal of the UiO-66-NH2/Ppix probe demonstrated its potential for intelligent quantitative determination of sulfides, offering a valuable and efficient tool for pollution detection and real-time rapid environmental monitoring.
Collapse
Affiliation(s)
- Degui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China
| | - Long Yu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China.
| | - Xin Li
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China
| | - Yunfei Lu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China
| | - Chaoqun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Penghui Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Houjuan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China; Institute of Materials Research and Engineering, A⁎STAR (Agency for Science, Technology and Research), 138634, Singapore
| | - Bing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China.
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China.
| |
Collapse
|
12
|
Yang Y, Zeng X, Fu C, Tan L, Yang N, Liu Y, Shen Q, Wei J, Yu C, Lu C. Paper-based microfluidics and tailored gold nanoparticles for visual colorimetric detection of multiplex allergens. Anal Chim Acta 2023; 1272:341497. [PMID: 37355331 DOI: 10.1016/j.aca.2023.341497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
The highly efficient and accurate recognition of targeted allergens is an essential element in the diagnosis of allergic diseases and follow-up desensitization treatment in clinic. The current clinical methods widely used to detect sIgE are high cost, time-consuming procedures, and bulky equipment. Herein, a multiplex microfluidic paper-based device (multi-μPAD) was developed that combined with tailored gold nanoparticles for simultaneously visual, colorimetric detection of different allergens in serum. This device could be used as quantitative detection of sIgE with LOD as low as 0.246 KUA/L in colorimetric method. In vitro results also showed that this device possessed good repeatability, high accuracy and incredible stability in different pH (6.0-7.4) and temperature (24-37 °C), as well as long-term storage within 90-day. Finally, this method was successfully utilized for assessing clinical multi-sample screening in 35 allergic patients. After the addition of the samples from allergic patients, the agreement rate of clinical results with commercial enzyme-linked immunosorbent assay (ELISA) kit reached more than 97%, which further indicated that this device had the advantages of efficient, accurate and sensitive to screen various allergens in real clinical serum samples. Therefore, by simply altering antigens and antibodies, this device can also be used for high-throughput detection of other allergens, making it considerable potential for clinical diagnosis of allergic diseases.
Collapse
Affiliation(s)
- Yuxing Yang
- Precision Medicine Center, The First Clinical Medical College of Gannan Medical University, Ganzhou, 341001, China
| | - Xiaofei Zeng
- Precision Medicine Center, The First Clinical Medical College of Gannan Medical University, Ganzhou, 341001, China
| | - Chan Fu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lingxiao Tan
- Respiratory Department, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yongxin Liu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China; Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| | - Chen Lu
- Precision Medicine Center, The First Clinical Medical College of Gannan Medical University, Ganzhou, 341001, China.
| |
Collapse
|
13
|
Wei J, Zhu M, Du T, Li J, Dai P, Liu C, Duan J, Liu S, Zhou X, Zhang S, Guo L, Wang H, Ma Y, Huang W, Zhao Q. Full-color persistent room temperature phosphorescent elastomers with robust optical properties. Nat Commun 2023; 14:4839. [PMID: 37563116 PMCID: PMC10415293 DOI: 10.1038/s41467-023-40193-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Persistent room temperature phosphorescent materials with unique mechanical properties and robust optical properties have great potential in flexible electronics and photonics. However, developing such materials remains a formidable challenge. Here, we present highly stretchable, lightweight, and multicolored persistent luminescence elastomers, produced by incorporating ionic room temperature phosphorescent polymers and polyvinyl alcohol into a polydimethylsiloxane matrix. These prepared elastomers exhibit high optical transparency in daylight and emit bright persistent luminescence after the removal of 365 nm excitation. The homogeneous distribution of polymers within the matrix has been confirmed by confocal fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. Mechanical property investigations revealed that the prepared persistent luminescence elastomers possess satisfactory stretchability. Impressively, these elastomers maintain robust optical properties even under extensive and repeated mechanical deformations, a characteristic previously unprecedented. These fantastic features make these persistent luminescence elastomers ideal candidates for potential applications in wearable devices, flexible displays, and anti-counterfeiting.
Collapse
Affiliation(s)
- Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Tingchen Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Jangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Jiayu Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Xingcheng Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Sudi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Luo Guo
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Hao Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLFE), Northwestern Polytechnical University, Xi'an, 710072, P.R. China.
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P.R. China.
| |
Collapse
|