1
|
Guan J, Wang X, Chen Y, Zhang H, Li Z, Li A, Zhai F, Chen L, Chen L, Li X, Chen B, Xu Y, Dong X, Liu W, Dai X, Wang S, Diwu J. Lacunary Selenotungstate Serves as a Therapeutic Agent for Uranium Intake. Inorg Chem 2025; 64:8514-8523. [PMID: 40249844 DOI: 10.1021/acs.inorgchem.4c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The internal contamination of uranium poses severe health risks to both professionals and the public in case of nuclear accidents due to its chemo- and radiotoxicity. Although chelation therapy has been considered the only practical treatment in emergencies, current clinical chelators show only limited efficacy for uranium. Herein, a recently designed lacunary selenotungstate polyoxometalate (Se6W45) was demonstrated as an effective therapeutic agent. In this construct, the open site in Se6W45 provides a suitable uranium binding environment, resulting in the selective removal of uranium from kidneys (85.87%) and femurs (39.81%) with an extremely low ligand/metal ratio of only 4:1. The redox active sites in Se6W45, primarily the incorporated selenium, were able to reduce the intracellular reactive oxygen species (ROS) to normal levels in NRK-52E cells exposed to uranium. This approach overcomes the disadvantages of the excessive use of current chelating ligands in the range from 100- to 1000-folds, avoiding the consequential depletion of heterogeneous cations, dysfunction of proteins, and/or acid-base imbalance. More importantly, it provides a synergistic antidotal therapy for uranium in reducing radiation damage and chemical toxicity.
Collapse
Affiliation(s)
- Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yemeng Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zongyi Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ao Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuwan Zhai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ximeng Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Bin Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yigong Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiao Dong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Liu
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection (SRMP), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Cao Y, Wang Z, Song W, Liu Y, Zhao Q, Li W, Zheng C, Li W, Chen Z, Zhu L, Duan T, Li X. Perilla frutescens: A new strategy for uranium decorporation. CHEMOSPHERE 2024; 350:141066. [PMID: 38159731 DOI: 10.1016/j.chemosphere.2023.141066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Radionuclide uranium is a great threat to human health, due to its high chemical toxicity and radioactivity. Finding suitable uranium decorporation to reduce damage caused by uranium internal contamination is an important aspect of nuclear emergency response. However, the poor selectivity and/or high toxicity of the only excretory promoter approved by Food and Drug Administration (FDA) is an obvious disadvantage. Herein, we choose an edible natural product, the traditional Chinese medicine called Perilla frutescens (PF), which has wide sources and can be used as an excellent and effective uranyl decorporation. In vivo uranium decorporation assays illustrate the removal efficiency of uranium in kidney were 68.87% and 43.26%, in femur were 56.66% and 54.53%, by the test of prophylactic and immediate administration, respectively. Cell level experiments confirmed that it had better biocompatibility than CaNa3-DTPA (CaNa3-diethylenetriamine pentaacetate, a commercial actinide excretion agent). In vitro static adsorption experiments exhibited that its excellent selectivity sorption for uranyl. All those results findings would provide new research insights about natural product for uranyl decorporation.
Collapse
Affiliation(s)
- Yalan Cao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 629000, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wanrong Song
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yawen Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Caohui Zheng
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenshuang Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, 621000, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, 621000, China.
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, 621000, China.
| |
Collapse
|
3
|
Shi P, Wang X, Zhang H, Sun Q, Li A, Miao Y, Shi C, Guan J, Gong S, Diwu J. Boosting Simultaneous Uranium Decorporation and Reactive Oxygen Species Scavenging Efficiency by Lacunary Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54423-54430. [PMID: 36455139 DOI: 10.1021/acsami.2c11226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The chemical toxicity and the oxidative stress induced by the internal exposure of uranium is responsible for the long-term adverse effect of in vivo contamination of uranium. An agent with simultaneous removal capability of uranium and excess reactive oxygen species (ROS) is highly desired. Herein, the lacunary Keggin-type polyoxometalate (POM) is demonstrated to selectively bind with uranyl ions in the presence of excess essential divalent ions and exhibits a compelling ROS scavenging efficiency of 78.8%. In vivo uranium decorporation assays illustrate the uranium sequestration efficiencies of 74.0%, 49.4%, and 37.1% from kidneys by prophylactic, prompt, and delayed administration of lacunary POM solution, respectively. The superior ROS quenching and uranium removal performance in comparison with all reported bifunctional agents endow lacunary polyoxometalates as novel agents to effectively protect people from injuries caused by the internal exposure of actinides.
Collapse
Affiliation(s)
- Peiheng Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiwen Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yu Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cen Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shicheng Gong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|