1
|
Li H, Fu J, Fu J, Li X, Wei D, Chen H, Bai L, Yang L, Yang H, Wang W. Regioselective and Diastereoselective Halofunctionalization of Alkenes Promoted by Organophotocatalytic Solar Catalysis. J Org Chem 2023. [PMID: 37154472 DOI: 10.1021/acs.joc.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,β-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.
Collapse
Affiliation(s)
- Huili Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jundong Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xueji Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
2
|
Zhao J, Wei T, Ke S, Li Y. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202212032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
3
|
Cai BG, Bao YP, Pei C, Li Q, Li L, Koenigs RM, Xuan J. Photochemical synthesis of 1,2,4-triazoles via addition reaction of triplet intermediates to diazoalkanes and azomethine ylide intermediates. Chem Sci 2022; 13:13141-13146. [PMID: 36425480 PMCID: PMC9667952 DOI: 10.1039/d2sc04720a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/22/2022] [Indexed: 09/19/2023] Open
Abstract
The reactivity of diazoalkanes most commonly proceeds through the formation of carbene intermediates or dipolar cycloaddition reactions. The reaction of diazoalkanes with intermediates with unpaired electrons, however, is much less elaborated. Herein, we report on the photochemical reaction of acceptor-only diazoalkanes with azodicarboxylates. Photoexcitation of the latter results in the formation of a triplet species, which undergoes an addition reaction with diazoalkanes and formation of an azomethine ylide followed by dipolar cycloaddition reaction with organic nitriles to give a 1,2,4-triazole. The application of this transformation was elaborated in a broad and general substrate scope (48 examples), including scale-up via flow chemistry and downstream transformations. Experimental and computational studies were performed to elucidate the reaction mechanism and to rationalize the reaction outcome.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Ye-Peng Bao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education Hefei Anhui 230601 China
| |
Collapse
|
4
|
Liu T, Xue F, Wang B, Wang R, Cao W, Zhao X, Xia Y, Jin W, Zhang Y, Lin H, Liu C. Rapid microwave synthesis of Bi2WO6 for C=C bonds oxidative cleavage to ketones with visible light irradiation in aerobic micellar medium. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Bi MH, Cheng Y, Xiao WJ, Chen JR. Visible-Light-Induced Photoredox-Catalyzed Selective 1,4-Difluoroalkylesterification of 1-Aryl-1,3-dienes. Org Lett 2022; 24:7589-7594. [PMID: 36208484 DOI: 10.1021/acs.orglett.2c03020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A selective three-component 1,4-difluoroalkylesterification of 1-aryl-1,3-dienes enabled by dual photoredox and copper catalysis is described. This protocol uses commercially available CF2-reagents as radical precursors and carboxylic acids as oxygen-based nucleophiles, providing access to difluoroalkylated allylic esters. This protocol could be extended to intramolecular two-component 1,4-difluoroalkylesterification to access 3-substituted benzobutyrolactones. Preliminary mechanistic studies support a radical process.
Collapse
Affiliation(s)
- Ming-Hang Bi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Wu YL, Jiang M, Rao L, Cheng Y, Xiao WJ, Chen JR. Selective Three-Component 1,2-Aminoalkoxylation of 1-Aryl-1,3-dienes by Dual Photoredox and Copper Catalysis. Org Lett 2022; 24:7470-7475. [PMID: 36173401 DOI: 10.1021/acs.orglett.2c03124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-component 1,2-aminooxygenation reaction of 1,3-dienes by dual photoredox and copper catalysis is described. This protocol uses N-aminopyridinium salts as N-centered radical precursors and nucleophilic alcohols as oxygen sources, providing modular and practical access to 1,2-aminoalkoxylation products with good yields and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Ya-Li Wu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Li Rao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
7
|
Zhou X, Zhang A, Zhang Q, Liu Q, Xuan J. Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of α-Oxocarboxylic Acids with o-(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|