1
|
Dong W, Liu Z, Bai A, Zhang X, Han P, He J, Li C. Enantioselective Cobalt-Catalyzed Remote Hydroboration of Alkenylboronates. Org Lett 2025; 27:1895-1900. [PMID: 39949241 DOI: 10.1021/acs.orglett.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Heteroatomic groups in alkenes typically direct thermodynamically favored chain walking of C═C bonds toward themselves, thereby facilitating C-H bond functionalization near the heteroatoms. We present herein an efficient cobalt-catalyzed contra-thermodynamic remote hydroboration of alkenylboronates with pinacolborane to synthesize chiral 1,n-diboronates. This protocol features a broad substrate scope, high functional group tolerance, and excellent enantioselectivity. Mechanistic studies indicate the involvement of a chain-walking process. Gram-scale reactions and various product derivatizations further highlight its practicality.
Collapse
Affiliation(s)
- Wenke Dong
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Zheming Liu
- Hunan Petrochemical Company, Limited, Yueyang, Hunan 414000, People's Republic of China
| | - Anbang Bai
- College of Pharmacy, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaoyu Zhang
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Peiwen Han
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Jingyi He
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Chenchen Li
- College of Pharmacy, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
2
|
Chen P, Tian L, Ji X, Deng GJ, Huang H. Copper-Catalyzed 1,2-Sulfonyletherification of 1,3-Dienes. Org Lett 2024; 26:2939-2944. [PMID: 38602425 DOI: 10.1021/acs.orglett.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A selective three-component 1,2-sulfonyl etherification of aryl 1,3-dienes enabled by copper catalysis to afford biologically interesting alkenyl 1,2-sulfone ether derivatives through C-S and C-O bond formation is described. The protocol proceeds with the sulfonyl chloride and alcohols under simple, mild, and base-free conditions, providing a straightforward route to sulfonylated allyl ether compounds with broad functional group tolerance and excellent chemo- and regioselectivity. Mechanistic studies indicate that the selective alkene difunctionalization includes a key copper-mediated single-electron transfer process.
Collapse
Affiliation(s)
- Pu Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lin Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
3
|
Lyu MY, Morais GN, Chen S, Brown MK. Ni-Catalyzed 1,1- and 1,3-Aminoboration of Unactivated Alkenes. J Am Chem Soc 2023; 145:27254-27261. [PMID: 38078874 PMCID: PMC11078560 DOI: 10.1021/jacs.3c12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alkene borylfunctionalization reactions have emerged as useful methods for chemical synthesis. While much progress has been made on 1,2-borylamination reactions, the related 1,1- and 1,3-borylaminations have not been reported. Herein, a Ni-catalyzed 1,1-borylamination of 1,1-disubstituted and monosubstituted alkenes and a 1,3-borylamination of cyclic alkenes are presented. Key to development of these reactions was the identification of an alkyllithium activator in combination with Mg salts. The utility of the products and the mechanistic details are discussed.
Collapse
Affiliation(s)
- Mao-Yun Lyu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Gabriel N Morais
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Li Y, Yin G. Nickel Chain-Walking Catalysis: A Journey to Migratory Carboboration of Alkenes. Acc Chem Res 2023; 56:3246-3259. [PMID: 37910401 DOI: 10.1021/acs.accounts.3c00505] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
ConspectusChain-walking offers extensive opportunities for innovating synthetic methods that involve constructing chemical bonds at unconventional sites. This approach provides previously inaccessible retrosynthetic disconnections in organic synthesis. Through chain-walking, transition metal-catalyzed alkene difunctionalization reactions can take place in a 1,n-addition (n ≠ 2) mode. Unlike classical 1,2-regioselective difunctionalization reactions, there remains a scarcity of reports regarding migratory patterns. Moreover, the range of olefins utilized in these studies is quite limited.About five years ago, our research group embarked on a project aimed at developing valuable migratory difunctionalization reactions of alkenes through chain-walking. Our focus was on carboboration of alkenes utilizing nickel catalysis. The reaction commences with the migratory insertion of an olefin into a Ni-Bpin species. Subsequently, a thermodynamically stable alkyl nickel complex is generated through a chain-walking process. This complex then couples with a carbon-based electrophile, leading to the formation of an alkylboron compound. It is worth highlighting that the success of these transformations relies significantly on the utilization of a bisnitrogen-based ligand and LiOMe as a B2pin2 activator. Synthetically, these migratory carboboration reactions establish a robust platform for the rapid and efficient synthesis of a wide range of structurally diverse organoboron compounds, which are not facially accessed by conventional methods. The incorporation of a versatile boron group introduces a wealth of possibilities for subsequent diversifications, significantly enhancing the value of the resulting products and allowing for the creation of a broader range of valuable derivatives and applications.This Account provides a comprehensive overview of our research efforts and advancements in the field of migratory carboboration of unactivated alkenes using nickel catalysis. We begin by outlining the development of a series of 1,1-regioselective carboboration reactions of terminal alkenes. A significant focus is placed on the initial integration of boronate, which not only triggers the formation of thermodynamically stable metal species but also exerts control over remote stereochemistry in reactions involving substituted methylenecyclohexenes. Continuing our exploration, remarkable success is achieved in 1,3-regio- and cis-stereoselectivity when dealing with cyclic alkenes. Remarkably, nickel chain-walking catalysis enables heterocyclic alkenes to be viable coupling partners within our transformations. Moreover, it grants us the ability to achieve regioselectivity for cyclohexenes that was previously unattainable, thus expanding the horizons of regiochemical control in these reactions. Lastly, we present the evolution of ligand-modulated regiodivergent carboboration of allylarenes. By gaining insights into the underlying mechanisms driving regiodivergence, we lay a strong foundation for tackling challenges related to selecting specific sites in chain-walking reactions, especially when dealing with multiple stable factors. We anticipate that our findings, coupled with the mechanistic insights we've gained, will not only advance the realm of nickel chain-walking catalysis but also contribute to the broader understanding of selectivity control in reactions of this nature. This advancement will also catalyze the synthesis of intricate functional molecules, contributing to the creation of complex and valuable compounds in the realm of organic chemistry.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
5
|
Chen M, Gu YW, Deng W, Xu ZY. Mechanism and Origins of Regio- and Stereoselective Alkylboration of Endocyclic Olefins Enabled by Nickel Catalysis. J Org Chem 2023; 88:14115-14130. [PMID: 37766467 DOI: 10.1021/acs.joc.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The Ni-catalyzed alkylboration of endocyclic olefins is a stereo- and regioselective approach for the synthesis of boron-containing compounds. We report a detailed density functional theory (DFT) study to elucidate the mechanism and origins of the stereo-, chemo-, and regioselectivity of alkylboration of endocyclic olefins enabled by nickel catalysis. The alkylboration proceeds via the migratory insertion of alkenes, β-H elimination of the Ni(II) complex, subsequent migratory insertion leading to a new Ni(II) complex, combined with an alkyl radical, and reductive eliminations. The electronic effects of the endocyclic olefins synergistically control the regioselectivity toward the C1- and C2-position boration. In C1-position boration, a more electron-deficient carbon atom tends to combine with an electron-rich -Bpin group and leads to C1-position boration products. The stereoselectivity is influenced by the solvent effect, and the interaction between the substrate and Ni-catalyzed groups, the low-polarity solvent 1,4-dioxane, and a favorable steric hindrance effect result in the cis-alkylboration product. Chemoselectivity toward 1,3-alkylboration results from the steric hindrance effects of the -Bpin group.
Collapse
Affiliation(s)
- Man Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yi-Wen Gu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Zheng-Yang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
6
|
Nickel-catalyzed cooperative B-H bond activation for hydroboration of N‑heteroarenes, ketones and imines. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
Wu D, Pang H, Yin G. 1,1-Regioselective alkenylboration of styrenes enabled by palladium catalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Meng X, Zhu L, Liang J, Shi H, Lv J, Wang M, Zhang L, Wang C. Nickel-Catalyzed 1,2-Arylboration of Unactivated Alkenes to Access Boryl-Functionalized Aliphatic Amines. Org Lett 2022; 24:6962-6967. [PMID: 36135331 DOI: 10.1021/acs.orglett.2c02768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein a three-component 1,2-arylboration of alkenyl amines bearing a cleavable picolinamide directing group. With aryl halides as electrophiles and B2Pin2 as nucleophiles, a wide range of alkenes could be converted into valuable boryl-functionalized aliphatic amines. The reaction proceeds with high levels of chemo- and regiocontrol and exhibits high functional group tolerance. In addition, the pinacol boronic ester group could undergo various transformations, indicating that the protocol could potentially provide a platform for versatile regioselective difunctionalization of alkenyl amines.
Collapse
Affiliation(s)
- Xiao Meng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jimin Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Haoran Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jun Lv
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Mengbo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lanlan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|