1
|
Jin XK, Zhou JH, Zeng HY, Zheng MJ, Li ZH, Wei Y, Jiang K. An I 2/amine synergistic catalysis enables 2,2'-bipyridine synthesis from oxime esters and enals. Org Biomol Chem 2025; 23:3081-3092. [PMID: 40047493 DOI: 10.1039/d5ob00079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
A synergistic I2/secondary amine catalysis has been developed for the modular assembly of 2,2'-bipyridines, employing oxime esters and enals as readily available starting materials. This method demonstrates a good substrate scope and functional group tolerance and can easily afford a series of structurally new 2,2'-bipyridines in moderate to good yields.
Collapse
Affiliation(s)
- Xiao-Kun Jin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jia-Hao Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Han-Ying Zeng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Mei-Jun Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zi-Hao Li
- Chongqing DEPU Foreign Language School, Chongqing 401320, China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Tian Y, Tao H, Yang K, Tang Y, Cai Y. Multicomponent Modular Synthesis of Chiral Bicyclic Bridged Compounds via an Alkenylfuran-Based Acylation/Rearrangement/Cyclization Sequence. Org Lett 2025; 27:1181-1185. [PMID: 39865720 DOI: 10.1021/acs.orglett.4c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.1] and [4.2.1] bicyclic bridged compounds in high yields with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Yu Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongji Tao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Kunlong Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
He SM, Yang YB, Liu LY, Yu N, Zhou YQ, Zhou JH, Zheng MJ, Jin XK, Jiang K, Wei Y. Copper-Catalyzed Annulation of α,β-Unsaturated Ketoximes with Dialkyl Acetylenedicarboxylates for the Synthesis of Highly Substituted Pyridines. Org Lett 2025; 27:1100-1105. [PMID: 39849985 DOI: 10.1021/acs.orglett.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
A copper-catalyzed [4 + 2] annulation protocol from readily available α,β-unsaturated ketoximes and dialkyl acetylenedicarboxylates has been achieved. The approach enables the expedient construction of a series of structurally new highly substituted pyridines with good functional group tolerance.
Collapse
Affiliation(s)
- Shi-Mei He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Bo Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lv-Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jia-Hao Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mei-Jun Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiao-Kun Jin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Zhou Y, He Y, Huang H, Deng GJ. Visible-light-induced aerobic oxidative cyclization of nitroarenes with triethylamine using an organophotocatalyst. Org Biomol Chem 2025; 23:1338-1341. [PMID: 39751402 DOI: 10.1039/d4ob01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Isoxazolidines are structurally important scaffolds in many natural products and bioactive compounds. Herein, we report a novel synthetic method for isoxazolidine derivatives through visible-light-induced photoredox cascade cyclization of nitroarenes with triethylamine under aerobic conditions. The resultant 5-hydroxyl isoxazolidine compounds were generally obtained in moderate yields with a broad range of compatible functionalities.
Collapse
Affiliation(s)
- Yazheng Zhou
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yutong He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
5
|
Zhang HP, Chen W, Hu ZJ, Lyu X, Qiao EJ, Jin WB, Xu WY, Ding XH, Miao CB, Yang HT. Copper-Catalyzed [3 + 2] Annulation of O-Acyl Oximes with p-Hydroquinones for the Synthesis of 5-Hydroxyindoles. J Org Chem 2024; 89:14968-14980. [PMID: 39364928 DOI: 10.1021/acs.joc.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A copper-catalyzed [3 + 2] annulation of O-acyl oximes with 2-electron-withdrawing group substituted p-hydroquinones for the efficient synthesis of polysubstituted 5-hydroxyindoles is developed. Further intramolecular cyclization leads to the concise and rapid construction of several kinds of 3,4- and 4,5-fused polycyclic indoles.
Collapse
Affiliation(s)
- Hui-Peng Zhang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wei Chen
- Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, Jiangsu 213018, China
| | - Zi-Jun Hu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xinyu Lyu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - En-Jun Qiao
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wan-Bo Jin
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wen-Ya Xu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xian-Heng Ding
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chun-Bao Miao
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hai-Tao Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
6
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
7
|
Liu M, Liu B, Chen H, Wang Q, Liu L, Feng K, Wang Z, Li Q. Synthesis of 2 H-imidazoles via copper-catalyzed homo/cross-coupling of oxime acetates. Org Biomol Chem 2024; 22:7316-7320. [PMID: 39171576 DOI: 10.1039/d4ob00977k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A facile and practical protocol to construct 2H-imidazoles by applying an oxime acetate block as the sole component via oxidative homo/cross-coupling catalyzed by Cu(I) was developed. This strategy provides a straightforward method to produce a series of substituted 2H-imidazoles in moderate to excellent yields. The transformation process is straightforward to operate and is considered as a readily available catalytic system exhibiting good substrate compatibility, eliminating the necessity for pre-functionalization of azides or the use of additives.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Hongyan Chen
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Zijia Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252000, P. R. China
| |
Collapse
|
8
|
Huang Q, Liu J, Wan JP. Electrochemical Enaminone-Thioamide Annulation and Thioamide Dimeric Annulation for the Tunable Synthesis of Thiazoles and 1,2,4-Thiadiazole. Org Lett 2024; 26:5263-5268. [PMID: 38875707 DOI: 10.1021/acs.orglett.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A green and sustainable electrochemical oxidative cyclization of enaminones with thioamides under metal- and oxidant-free conditions has been developed, providing an efficient approach for thiazole synthesis. Furthermore, 1,2,4-thiadiazoles can be selectively accessed via the electrochemical dimerization of thioamides in the absence of enaminones.
Collapse
Affiliation(s)
- Qihui Huang
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
9
|
Hu ZJ, Chen W, Lyu X, Zhang HP, Chen SW, Ding XH, Yu CH, Cui Z, Miao CB, Yang HT. Copper-Catalyzed [3 + 2] Annulation of O-Acyl Oximes with 4-Sulfonamidophenols for the Synthesis of 5-Sulfonamidoindoles and 2-Amido-5-sulfonamidobenzofuran-3(2 H)-ones. Org Lett 2024; 26:4229-4234. [PMID: 38738828 DOI: 10.1021/acs.orglett.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A copper-catalyzed [3 + 2] annulation of O-acyl oximes with 4-sulfonamidophenols is developed. The advantage of this method lies in the concurrent double activation of two substrates to form nucleophilic enamines and electrophilic quinone monoimines. The substituent on the α-carbon of O-acyl oxime determines two different reaction pathways, thereby leading to the selective generation of 5-sulfonamidoindoles and 2-amido-5-sulfonamidobenzofuran-3(2H)-ones.
Collapse
Affiliation(s)
- Zi-Jun Hu
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Wei Chen
- Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, Jiangsu 213018, P. R. China
| | - Xinyu Lyu
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Hui-Peng Zhang
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Si-Wei Chen
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Xian-Heng Ding
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Cang-Hai Yu
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Zhen Cui
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
10
|
Chen J, Jiang S, Shi W, Jiang P, Liu X, Huang H, Deng GJ. Three-Component Ring-Expansion Reaction of Indoles Leading to Synthesis of Pyrrolo[2,3- c]quinolines. Org Lett 2023; 25:6886-6890. [PMID: 37676779 DOI: 10.1021/acs.orglett.3c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we have developed an atom- and step-economic three-component cascade reaction that enables a modular platform for the synthesis of pyrrolo[2,3-c]quinoline compounds through ring-expansion/cyclization by way of novel N1-C2 cleavage of indoles. The metal-free catalytic system exhibits a broad functional group tolerance.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Weiliang Shi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Xinping Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Recent Advances in Molecule Synthesis Involving C-C Bond Cleavage of Ketoxime Esters. Molecules 2023; 28:molecules28062667. [PMID: 36985637 PMCID: PMC10058904 DOI: 10.3390/molecules28062667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The synthetic strategies of oxime derivatives participating in radical-type reactions have been rapidly developed in the last few decades. Among them, the N–O bond cleavage of oxime esters leading to formation of nitrogen-centered radicals triggers adjacent C–C bond cleavage to produce carbon-centered free radicals, which has been virtually used in organic synthesis in recent years. Herein, we summarized the radical reactions involving oxime N–O bond and C–C bond cleavage through this special reaction form, including those from acyl oxime ester derivatives and cyclic ketoxime ester derivatives. These contents were systematically classified according to different reaction types. In this review, the free radical reactions involving acyl oxime esters and cyclic ketoxime esters after 2021 were included, with emphasis on the substrate scope and reaction mechanism.
Collapse
|
12
|
Liu K, Li F, Wang J, Zhang Z, Du F, Su H, Wang Y, Yuan Q, Li F, Wang T. Silver-catalyzed cyclization of α-imino-oxy acids to fused tetralone derivatives. Org Biomol Chem 2023; 21:2700-2704. [PMID: 36912118 DOI: 10.1039/d2ob02329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A silver-catalyzed intramolecular radical relay cyclization of α-imino-oxy acids under mild conditions has been described. This reaction offers facile access to a diverse range of fused tetralone derivatives with exquisite stereoselectivity in moderate to good yields (40-98%). Experimental studies show that the reaction undergoes a decarboxylation and acetone fragmentation/1,5-hydrogen atom transfer (HAT)/cyclization process.
Collapse
Affiliation(s)
- Kai Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Feng Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China. .,College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jingjing Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China. .,College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhaowei Zhang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Fengge Du
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Hanxiao Su
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yonghong Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingqing Yuan
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Fei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Teng Wang
- School of Chemistry, Beihang University, Beijing, 100191, China.
| |
Collapse
|
13
|
Prakash M, Halder S, Guin S, Samanta S. Swapping Copper-Catalytic Process: Selective Access to Pyrazoles and Conjugated Ketimines from Oxime Acetates and Cyclic Sulfamidate Imines. Chem Asian J 2023; 18:e202201114. [PMID: 36583485 DOI: 10.1002/asia.202201114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
A powerful CuCl-catalyzed sequential one-pot reaction of aryl methyl ketoxime acetates with cyclic N-sulfonyl imines followed by elimination in the presence of base is reported. This hydrazine-free method conveniently makes C-C and N-N bonds via a radical cleavage of the N-O bond, delivering a special class of C3-hydroxyarylated pyrazoles in good yields. Surprisingly, while employing CuI as a catalyst instead of CuCl, the reaction proceeds through a non-radical pathway which embodies a new tactic for the high-yielding access to value-added conjugated N-unsubstituted ketimines. Moreover, additive-free approach to sulfamidate-fused-pyrazoles was achieved by successfully catalyzing addition and oxidative N-N bond-making reactions by CuI and CuCl, respectively. Significantly, our novel technique could convert the prepared ketimines into the pharmacologically recognized 6H-benzo[c]chromene frameworks.
Collapse
Affiliation(s)
- Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sajal Halder
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
14
|
Suzuki M, Terada M, Nakamura I. Copper-catalyzed [1,3]-nitrogen rearrangement of O-aryl ketoximes via oxidative addition of N–O bond in inverse electron flow †. Chem Sci 2023; 14:5705-5711. [PMCID: PMC10231427 DOI: 10.1039/d3sc00874f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The [1,3]-nitrogen rearrangement reactions of O-aryl ketoximes were promoted by N-heterocyclic carbene (NHC)-copper catalysts and BF3·OEt2 as an additive, affording ortho-aminophenol derivatives in good yields. The reaction of substrates with electron-withdrawing substituents on the phenol moiety are accelerated by adding silver salt and modifying the substituent at the nitrogen atom. Density functional theory calculations suggest that the rate-determining step of this reaction is the oxidative addition of the N–O bond of the substrate to the copper catalyst. The negative ρ values of the substituent at both the oxime carbon and phenoxy group indicate that the donation of electrons by the oxygen and nitrogen atoms accelerates the oxidative addition. [1,3]-Nitrogen rearrangement reactions of O-aryl ketoximes was catalytically promoted by IPrCuBr and BF3·OEt2. The oxidative addition of the N–O bond to the Cu catalyst is accelerated by donation of electrons from both nitrogen and oxygen atoms.![]()
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| |
Collapse
|
15
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|