1
|
Feng KC, Muneeb Ur Rehman M, Huang JC. Bioaccumulation and biotransformation of hexavalent chromium in black soldier fly (Hermetia illucens) in the antagonism of selenate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126054. [PMID: 40086785 DOI: 10.1016/j.envpol.2025.126054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
As a global environmental pollutant, many studies have focused on the removal of hexavalent chromium [Cr(VI)] from industrial wastewater, using organic materials as adsorbents. This study investigated the potential of the black soldier fly (BSF) for the bioremediation of the Cr-adsorbing/containing wheat bran as an adsorbent and antagonistic effects of selenate [Se(VI)] on Cr accumulation/transformation by the BSF. Our results indicate the BSF could tolerate Cr/Se toxicity without exhibiting significant morphological changes. Cr/Se concentrations in the BSF biomass decreased over the life cycle, suggesting the detoxification of both contaminants, while relatively lower Cr but significantly higher Se concentrations were found in the larvae co-exposed to Cr and Se, compared with the Cr/Se-exposed only larvae. Low bioaccumulation factor (BAF) values (∼0.47) indicate the absorbed Cr tended to be excreted out. The XAS results suggest the accumulated Cr was mainly present as elemental chromium during growth, while the Se, potentially as an antagonist, was mainly converted to elemental selenium and organo-Se species (selenomethionine/selenocystine) in the BSF co-exposed to Cr and Se. Overall, our study provides a better understanding of the biotransformation of Cr(VI), with or without Se, by the BSF, and risks of using the Cr-containing BSF as feed.
Collapse
Affiliation(s)
- Kuan-Chieh Feng
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | | | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| |
Collapse
|
2
|
Yin H, Huang L, Dai Y, Zheng Z, Li Y, Tang B, Wang X, Shi L. In-situ redox processes of electrosorption-based systems during As, Cr detoxification and recovery: mechanisms, applications and challenges. CHEMICAL ENGINEERING JOURNAL 2025; 503:157946. [DOI: 10.1016/j.cej.2024.157946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Yu X, Tang B, Li W, Wang D, Sun T, Zhang L, Liu Y. Two Stable Pillar-Layered Zn-LMOFs for Highly Fluorescence Sensing of Inorganic Pollutants and Nitro Aromatic Compounds in Water. Inorg Chem 2024; 63:18820-18829. [PMID: 39324750 DOI: 10.1021/acs.inorgchem.4c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Luminescent metal-organic frameworks (LMOFs) are a potential class of functional materials for the photoluminescent detection of a wide range of analytes as well as for the detection of pollutants in wastewater. Herein, by using the pillar-layered strategy, two new luminescence Zn-LMOFs (JLU-MOF222 and JLU-MOF223) were successfully solvothermal synthesized. The 2D layers are both consisting of Zn2+ and TPHC [TPHC = (1,1':2',1″-terphenyl)-3,3″,4,4',4″,5'-hexacarboxylic acid] ligands and then pillared by the different N-donor ligands to form the 3D Zn-LMOFs with fsh topology. Benefiting from the uncoordinated carboxylate sites, uncoordinated N atom, or -NH2 group in the pillaring ligands and excellent stability in pH = 2-13 aqueous phase, JLU-MOF222 and JLU-MOF223 not only can sensitively detect trace amounts of inorganic pollutants (Fe3+, Cr2O72-) and nitro aromatic compounds TNP and 2,4-DNP (TNP = 2,4,6- trinitrophenol, 2,4-DNP = 2,4-dinitrophenol) through luminescence quenching but also exhibit high selectivity of other anti-interference competing analytes. The two new Zn-LMOFs can be used as potential luminescent sensors for pollutant detection in water due to their high KSV and low limit of detection (LOD).
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baobing Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiantian Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Vincent JB. What Are the Implications of Cr(III) Serving as an Inhibitor of the Beta Subunit of Mitochondrial ATP Synthase? Biol Trace Elem Res 2024; 202:1335-1344. [PMID: 37580526 DOI: 10.1007/s12011-023-03809-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
A recent report has shown the active site of the beta subunit of mitochondrial ATP synthase is probably the site of action of Cr(III) action, independent of the insulin signaling pathway. This works appears to answer an important question about the mode of action of Cr(III) at a molecular level when supplied in supra-nutritional levels to rodents. However, as with any good research, the research also raises several questions. The relationship between this study and the results of rodent studies of chromium supplementation and between this study and the current understanding the chromium(III) transport and detoxification system are put into perspective.
Collapse
Affiliation(s)
- John B Vincent
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487-0336, USA.
| |
Collapse
|
5
|
Xie Y, Zhang Y, Wang Y, Wang X. Using the inherent elements in yeast biomass to produce Ni 2P/N-doped biocarbon composites for efficient hexavalent chromium reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119343-119355. [PMID: 37924400 DOI: 10.1007/s11356-023-30775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
The heterogeneous catalytic reduction of Cr(VI) to Cr(III) is an effective strategy for aqueous Cr(VI) contamination abatement, which requires the development of highly efficient, low-cost, and recyclable catalysts. Herein, Ni2P/N-doped biocarbon composites (Ni2P/N-BC) were fabricated through an anoxic pyrolysis process using NaCl and KCl as activators. A precursor of yeast biomass provided the essential C, N, and P elements for Ni2P/N-BC formation. When adopted for Cr(VI) reduction in the presence of oxalic acid as a reductant, the fabricated Ni2P/N-BC performed superior catalytic activity with a 100% Cr(VI) reduction efficiency within 10 min (Ni2P/N-BC-5 = 0.2 g L-1, oxalic acid = 0.4 g L-1, Cr(VI) = 20 mg L-1). Typical affecting parameters, e.g., catalyst dosage, oxalic acid loading, reaction temperature, initial solution pH, and water matrix, were investigated. Ni2P/N-BC exhibited good applicability in a broad pH range from 3.0 to 9.0 and in actual aquatic systems. Cr(VI) reduction efficiency remained 92.7% after five recycle runs. Such promising catalytic activity may originate from the well-crystallized Ni2P, N-doped biocarbon framework and high specific surface area of the materials. Preliminary reaction mechanism analysis indicated that the favorable charge state of Ni2P, fast hydrogen transfer, affinity of oxalic acid to Cr(VI), and inherent electron transfer in the biocarbon matrix contributed to effective Cr(VI) reduction. This work not only provides a facile and low-cost strategy to construct Ni2P/N-doped biocarbon nanosheet composite using environmentally benign biomass but also brings new insights for the remediation of Cr(VI) contamination.
Collapse
Affiliation(s)
- Yi Xie
- Department of Brewing Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yongkui Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yabo Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xuqian Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Parida L, Patel TN. Systemic impact of heavy metals and their role in cancer development: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:766. [PMID: 37249740 DOI: 10.1007/s10661-023-11399-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Heavy metals are well-recognised as environmental hazards due to their toxicity, environmental persistence, and bioaccumulation in living organisms. Human health is a crucial concern related to terrestrial and aquatic ecosystems poisoned by harmful heavy metals. Most heavy metals pollute the air, water, and soil, which can be fatal to humans. Humans and other species can be exposed to heavy metals through the food chain if the metals oxidise or combine with other environmental elements (such as water, soil, or air). Their entry into the food chain assures interactions with biological macromolecules in living systems, including humans, resulting in undesirable outcomes. Human poisonings have typically been caused by mercury, lead, chromium, cadmium, and arsenic. The build-up of these metals in living organisms causes various harmful consequences on different organs and tissues. The gravitas of heavy metal toxicity regarding molecular impact and carcinogenesis needs in-depth understanding despite the plethora of available data. Hence, additionally, we attempt to elaborate on the multi-level impact of five heavy metals and emphasise their role in cancer development. The rationale of this essay is thus to understand the role of five heavy metals, viz., lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg), in carcinogenesis. Heavy metals interfere with various biological functions, including proliferation, differentiation, repair of damage, and apoptosis. By comparing their modes of action, we see that these metals share common mechanisms for inducing toxicity, such as reactive oxygen species (ROS) production, antioxidant defence weakening, enzyme inactivation, and oxidative stress.
Collapse
Affiliation(s)
- Lucky Parida
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
7
|
Somnath, Ahmad M, Siddiqui KA. Ratiometric luminescent sensing of a biomarker for sugar consumption in an aqueous medium using a Cu(II) coordination polymer. Dalton Trans 2023; 52:3643-3660. [PMID: 36867431 DOI: 10.1039/d3dt00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An innovative [Cu(Hadp)2(Bimb)]n (KA@CP-S3) coordination polymer expands its dimensionality from a 1D chain to a 2D network. The topological analysis reveals that KA@CP-S3 has 2-connected uninodal 2D 2C1 topology. KA@CP-S3 has capable luminescent sensing for volatile organic compounds (VOCs), nitroaromatics, heavy metal ions, anions, disposed antibiotics (nitrofurantoin and tetracycline) and biomarkers. Intriguingly, KA@CP-S3 exhibits outstanding selective quenching of about 90.7% and 90.5% for the 125 mg dl-1 and 150 mg dl-1 strengths of sucrose, respectively, in aqueous solution along with other ranges in between. The photocatalytic degradation efficiency of KA@CP-S3 for the potentially harmful organic dye Bromophenol Blue displays 95.4%, which is the highest among the 13 dyes that were evaluated.
Collapse
Affiliation(s)
- Somnath
- Department of Chemistry, National Institute of Technology Raipur, G E Road, Raipur-492010, Chhattisgarh, India.
| | - Musheer Ahmad
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Kafeel Ahmad Siddiqui
- Department of Chemistry, National Institute of Technology Raipur, G E Road, Raipur-492010, Chhattisgarh, India.
| |
Collapse
|
8
|
Zavahir S, Elmakki T, Ismail N, Gulied M, Park H, Han DS. Degradation of Organic Methyl Orange (MO) Dye Using a Photocatalyzed Non-Ferrous Fenton Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:639. [PMID: 36839007 PMCID: PMC9965019 DOI: 10.3390/nano13040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Removal of recalcitrant organic pollutants by degradation or mineralization from industrial waste streams is continuously being explored to find viable options to apply on the commercial scale. Herein, we propose a titanium nanotube array (based on a non-ferrous Fenton system) for the successful degradation of a model contaminant azo dye, methyl orange, under simulated solar illumination. Titanium nanotube arrays were synthesized by anodizing a titanium film in an electrolyte medium containing water and ethylene glycol. Characterization by SEM, XRD, and profilometry confirmed uniformly distributed tubular arrays with 100 nm width and 400 nm length. The non-ferrous Fenton performance of the titanium nanotube array in a minimal concentration of H2O2 showed remarkable degradation kinetics, with a 99.7% reduction in methyl orange dye concentration after a 60 min reaction time when illuminated with simulated solar light (100 mW cm-2, AM 1.5G). The pseudo-first-order rate constant was 0.407 µmol-1 min-1, adhering to the Langmuir-Hinshelwood model. Reaction product analyses by TOC and LC/MS/MS confirmed that the methyl orange was partially fragmented, while the rest was mineralized. The facile withdrawal and regeneration observed in the film-based titanium nanotube array photocatalyst highlight its potential to treat real industrial wastewater streams with a <5% performance drop over 20 reaction cycles.
Collapse
Affiliation(s)
- Sifani Zavahir
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Tasneem Elmakki
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nourhan Ismail
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mona Gulied
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Suk Han
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Pal SC, Mukherjee D, Das MC. pH-Stable Luminescent Metal-Organic Frameworks for the Selective Detection of Aqueous-Phase Fe III and Cr VI Ions. Inorg Chem 2022; 61:12396-12405. [PMID: 35895324 DOI: 10.1021/acs.inorgchem.2c01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of chemically stable metal-organic framework (MOF)-based luminescent platforms for toxic ion detection in an aqueous medium is highly challenging because most of the classical MOFs are prone to water degradation, and that is the reason why most of the MOF-based luminescent sensors use a nonaqueous medium for sensing. In this contribution, we report two new water-stable luminescent MOFs (Zn-MOF-1 and Zn-MOF-2), assembled from a mixed-ligand synthesis approach. Because of the presence of a hydrophobic trifluoromethyl group to the backbone and stronger metal-N coordination, these MOFs exhibit excellent stability not only in water but also in acidic/alkaline aqueous solutions (pH = 3-10). Here, we report a green sensing approach by exploiting the significant reduction in photoluminescence of these MOFs in the presence of toxic ions. Fe3+ and CrO42-/Cr2O72- ions could be traced with a detection limit (LOD) in the micromolar range (0.045 and 0.745/0.33 μM for Zn-MOF-1; 125.2 and 114.2/83.5 μM for Zn-MOF-2). The mechanistic study reveals that competitive absorption of the excitation energy coupled with fluorescent resonance energy transfer are responsible for the turn-off quenching. The anti-interference ability and recyclability along with the pH stability gave these MOFs high potential to be used as practical sensors toward FeIII and CrVI ions in water as a greenest medium.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
11
|
Wang X, Long H, Li L, Zhan L, Zhang X, Cui H, Shen J. Efficiently selective extraction of iron (III) in an aluminum‐based metal–organic framework with native N adsorption sites. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Wang
- College of Materials Science and Engineering Chongqing University of Technology Chongqing China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Haijun Long
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Lu Li
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
| | - Li Zhan
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Xin Zhang
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Hengqing Cui
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Jun Shen
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| |
Collapse
|
12
|
Eshaq G, M A, Khan MA, Alothman ZA, Sillanpää M. A novel Sm doped Cr 2O 3 sesquioxide-decorated MWCNTs heterostructured Fenton-like with sonophotocatalytic activities under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127812. [PMID: 34844808 DOI: 10.1016/j.jhazmat.2021.127812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Novel Sm doped Cr2O3 decorated MWCNTs nanocomposite photocatalyst was successfully prepared by a facile hydrothermal method for metoprolol (MET) degradation. A heterogeneous photo -Fenton like system was formed with the addition of H2O2 for ultrasonic irradiation (US), visible light irradiation (Vis) and dual irradiation (US/Vis) systems. The intrinsic characteristics of Sm doped Cr2O3 decorated MWCNTs nanocomposite was comprehensively performed using state-of-art characterization tools. Optical studies confirmed that Sm doping shifted the absorbance of Cr2O3 towards the visible-light region, further enhanced by MWCNTs incorporation. In this study, degradation of metoprolol (MET) was investigated in the presence of Cr2O3 nanoparticles, Sm doped Cr2O3 and Sm doped Cr2O3 decorated MWCNTs nanocomposites using sonocatalysis and photocatalysis and simultaneously. Several different experimental parameters, including irradiation time, H2O2 concentration, catalyst amount, initial concentration, and pH value, were optimized. The remarkably enhanced sonophotocatalytic activity of Sm doped Cr2O3 decorated MWCNTs could be attributed to the more formation of reactive radicals and the excellent electronical property of Sm doping and MWCNTs. The rate constant of degradation using sonophotocatalytic system was even higher than the sum of rates of individual systems due to its synergistic performance based on the kinetic data. A plausible mechanism for the degradation of MET over Sm-Cr2O3/MWCNTs is also demonstrated by using active species scavenger studies and EPR spectroscopy. Our findings imply that (•OH), (h+) and (•O2-) were the reactive species responsible for the degradation of MET based on the special three-way Fenton-like mechanism and the dissociation of H2O2. The durability and stability of the nanocomposite were also performed, and the obtained results revealed that the catalysts can endure the harsh sonophotocatalytic conditions even after fifth cycles. Mineralization experiments using the optimized parameters were evaluated as well. The kinetics and the reaction mechanism with the possible reasons for the synergistic effect were presented. Identification of degraded intermediates also investigated.
Collapse
Affiliation(s)
- Gh Eshaq
- Department of Separation Science, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Amer M
- Division of Cardiac Surgery, Heart Centre Siegburg-Wuppertal, University Witten, Herdecke, Germany
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zeid A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Li X, Xiu D, Shi J, Miao J, Yu Y, Song H, Lin J, Feng Q, Yu H. Visual Hg(II) sensing in aqueous solution via a new 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole-based fluorescence coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120367. [PMID: 34530197 DOI: 10.1016/j.saa.2021.120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence coordination polymer [Zn(Py2TTz)(5-OH-IPA)]n (1) (Py2TTz = 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole, 5-OH-IPA = 5-hydroxyisophthalic acid dianion) was synthesized, which exhibited the characteristics of fluorescence quenching and bathochromic shift toward Hg(II) in aqueous solution at pH 7.00. Mechanism study showed that the interactions between Hg(II) ions and Py2TTz ligands in 1 were responsible for the fluorescence emission change. Thanks to the specific interactions between 1 and Hg(II), excellent selectivity was achieved both in aqueous solution and in solid test paper. The detection limit of 1 for Hg(II) sensing was 125.76 nmol L-1 and a linear rang was 1.00-10.00 μmol L-1. More importantly, satisfactory recovery and accuracy of 1 for Hg(II) sensing were also obtained in buffer-free real water samples.
Collapse
Affiliation(s)
- Xin Li
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Deping Xiu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Junjie Shi
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jiaran Miao
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yingying Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Huihua Song
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jin Lin
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Feng
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Haitao Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
14
|
Deb AK, Biswas B, Naidu R, Rahman MM. Mechanistic insights of hexavalent chromium remediation by halloysite-supported copper nanoclusters. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126812. [PMID: 34396956 DOI: 10.1016/j.jhazmat.2021.126812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution is a significant environmental concern with remediation challenge. Hexavalent chromium (Cr(VI)) is more toxic than trivalent chromium (Cr(III)) due to its mutagenicity and oncogenicity. In this investigation, a multi-functional material, copper nanoclusters (CuNCs)-halloysite nanotubes (HNT) composite (CuNCs@HNT), has been synthesised in an eco-friendly manner and utilised for Cr(VI) remediation. Advanced analytical tools confirmed the seeding of ultra-fine CuNCs onto HNT surfaces. The maximum adsorption capacity of CuNCs@HNT is 79.14 ± 6.99 mg/g at pH 5 ± 0.1 with an increment at lower pHs. This performance was comparable for real surface stream water as well as other reported materials. The pseudo-second-order kinetic-, intra-particle diffusion- and Freundlich isotherm models well fit the experimental data implying that the chemisorption, multiphase diffusion and multi-molecular layer distribution occurred during adsorption. The Fourier-transform infrared and the x-ray photoelectron spectra also ensured the transformation of Cr(VI) to Cr(III) indicating the material's suitability for concurrent adsorption and reduction of Cr(VI). While coexisting cations and anions did not overwhelm this adsorption, CuNCs@HNT was regenerated and reused five successive times in adsorption-desorption cycles without significant loss of adsorption capacity and material's integrity. Therefore, this multi-functional, biocompatible, low-cost and stable CuNCs@HNT composite may have practical application for similar toxic metals remediation.
Collapse
Affiliation(s)
- Amal Kanti Deb
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Bhabananda Biswas
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, STEM UniSA, Mawson Lakes Campus, SA 5095, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
15
|
Shao JJ, Ni J, Liang Y, Li GJ, Chen L, Wang FM. Luminescent MOFs for selective sensing of Ag+ and other ions(Fe(III) and Cr(VI))in aqueous solution. CrystEngComm 2022. [DOI: 10.1039/d2ce00057a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new title MOFs, [Zn(BTA)2]n(MOF-1), [Zn3(BTA)2(5-tbuip)2]n(MOF-2) (BTA=1H-Benzotriazole, 5-tbuip=5-tert-Butylisophthalcc Acid) have been synthesized by solvothermal method. The structures of two complexes have been determined by single-crystal X-ray diffraction analysis and further...
Collapse
|
16
|
Liu L, Jia Y, Chen, Li D, Hu M. A multifunctional fluorescent Cd-MOF probe: its synthesis, structure, and sensing properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj00358a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Cd-MOF with a one-dimensional cavity can be used as a multifunctional fluorescent probe to effectively recognize CrO42− and Cr2O72− ions, Fe3+ ions and TNP molecules.
Collapse
Affiliation(s)
- Lu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chen
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Dechao Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
17
|
Diana R, Caruso U, Panunzi B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers (Basel) 2021; 13:3712. [PMID: 34771269 PMCID: PMC8588226 DOI: 10.3390/polym13213712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure-responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ugo Caruso
- Department of Chemical Science, University of Naples Federico II, 80126 Napoli, Italy;
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
18
|
Ré A, Rocha AT, Campos I, Keizer JJ, Gonçalves FJM, Oliveira H, Pereira JL, Abrantes N. Cytotoxic effects of wildfire ashes: In-vitro responses of skin cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117279. [PMID: 33971424 DOI: 10.1016/j.envpol.2021.117279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Wildfires are a complex environmental problem worldwide. The ashes produced during the fire bear metals and PAHs with high toxicity and environmental persistence. These are mobilized into downhill waterbodies, where they can impair water quality and human health. In this context, the present study aimed at assessing the toxicity of mimicked wildfire runoff to human skin cells, providing a first view on the human health hazardous potential of such matrices. Human keratinocytes (HaCaT) were exposed to aqueous extracts of ashes (AEA) prepared from ash deposited in the soil after wildfires burned a pine or a eucalypt forest stand. Cytotoxicity (MTT assay) and changes in cell cycle dynamics (flow cytometry) were assessed. Cell viability decreased with increasing concentrations of AEA, regardless of the ash source, the extracts preparation method (filtered or unfiltered to address the dissolved or the total fractions of contaminants, respectively) or the exposure period (24 and 48 h). The cells growth was also negatively affected by the tested AEA matrices, as evidenced by a deceleration of the progress through the cell cycle, namely from phase G0/G1 to G2. The cytotoxicity of AEA could be related to particulate and dissolved metal content, but the particles themselves may directly affect the cell membrane. Eucalypt ash was apparently more cytotoxic than pine ash due to differential ash metal burden and mobility to the water phase. The deceleration of the cell cycle can be explained by the attempt of cells to repair metal-induced DNA damage, while if this checkpoint and repair pathways are not well coordinated by metal interference, genomic instability may occur. Globally, our results trigger public health concerns since the burnt areas frequently stand in slopes of watershed that serve as recreation sites and sources of drinking water, thus promoting human exposure to wildfire-driven contamination.
Collapse
Affiliation(s)
- Ana Ré
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | - Isabel Campos
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Jan Jacob Keizer
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Helena Oliveira
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Nelson Abrantes
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Fu Y, Wang L, Peng W, Fan Q, Li Q, Dong Y, Liu Y, Boczkaj G, Wang Z. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media-A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126041. [PMID: 34229381 DOI: 10.1016/j.jhazmat.2021.126041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/20/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous conversion of most harmful As(III) and Cr(VI) to their less toxic counterparts is environmentally desirable and cost-effective. It has been confirmed that simultaneous oxidation of As(III) to As(V) and reduction of Cr(VI) to Cr(III) can occur via free radical or mediated electron transfer processes. While Cr(VI) is reduced by reacting with H•, eaq-, photoelectron directly or undergoing ligand exchange with H2O2 and SO32-, As(III) is oxidized by HO•, SO4•-, O2•-, and holes (h+) in free radical process. The ability to concentrate Cr and As species on heterogeneous interface and conductivity determining the co-conversion efficiency in mediated electron transfer process. Acidity has positive effect on these co-conversion, while mediated electron transfer process is not much affected by dissolved oxygen (O2). Organic compounds (e.g., oxalate, citrate and phenol) commonly favor Cr(VI) reduction and inhibit As(III) oxidation. To better understand the trends in the existing data and to identify the knowledge gaps, this review elaborates the complicated mechanisms for co-conversion of As(III) and Cr(VI) by various methods. Some challenges and prospects in this active field are also briefly discussed.
Collapse
Affiliation(s)
- Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenya Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yongxia Dong
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Chemical and Process Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
20
|
Chen SH, He WJ, Zhu YJ, Song HT. A luminescent turn-off sensor for Cr(VI) anions recognition derived from a Zn(II)-based metal–organic framework. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Potential antidiabetic molecule involving a new chromium(III) complex of dipicolinic and metformin as a counter ion: Synthesis, structure, spectroscopy, and bioactivity in mice. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Wang K, Hu XL, Li X, Su ZM, Zhou EL. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O72-. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Zhang X, Huang Y, Zhang Q, Li D, Li Y. A One‐Dimensional Cadmium Coordination Polymer: Synthesis, Structure, and Application as Luminescent Sensor for Cu
2+
and CrO
4
2−
/Cr
2
O
7
2−
Ions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiamei Zhang
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yuan Huang
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Qian Zhang
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Dawei Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yahong Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
24
|
Wei N, Yang D, Zhang Y, Wang B, Qu J. Synthesis, Structure, and Oxidative Reactivity of a Class of Thiolate‐Bridged Dichromium Complexes Featuring Antiferromagnetic Coupling Interactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nianmin Wei
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Yixin Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
- Key Laboratory for Advanced Materials Shanghai 200237 P. R. China
| |
Collapse
|
25
|
Syntheses, Structures and Luminescence Sensing Properties of Two Cd(II) MOFs Constructed from Mixed Ligands. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Chen N, Wang J. A serial of 2D Co‐Zn isomorphous metal–organic frameworks for photodegradation and luminescent detection properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ning‐Ning Chen
- School of Chemistry& Environmental EngineeringYancheng Teachers University Yancheng Jiangsu 224007 China
| | - Jun Wang
- School of Chemistry& Environmental EngineeringYancheng Teachers University Yancheng Jiangsu 224007 China
| |
Collapse
|
27
|
Kaur H, Sinha S, Krishnan V, Koner RR. Photocatalytic Reduction and Recognition of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06417] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Harpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005, HP India
| | - Sougata Sinha
- Department of Chemistry, Nalanda College of Engineering, Chandi-803108, Bihar India
| | - Venkata Krishnan
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005, HP India
| | - Rik Rani Koner
- School of Engineering, Indian Institute of Technology Mandi, Mandi-175005, HP India
| |
Collapse
|
28
|
Singh M, Senthilkumar S, Rajput S, Neogi S. Pore-Functionalized and Hydrolytically Robust Cd(II)-Metal-Organic Framework for Highly Selective, Multicyclic CO 2 Adsorption and Fast-Responsive Luminescent Monitoring of Fe(III) and Cr(VI) Ions with Notable Sensitivity and Reusability. Inorg Chem 2020; 59:3012-3025. [PMID: 32052632 DOI: 10.1021/acs.inorgchem.9b03368] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal-organic frameworks (MOFs) show a distinctive pre-eminence over other heterogeneous systems for adsorption of carbon dioxide (CO2) gas and fluorescence detection of water contaminating ions, where integration of both these attributes along with enhancement of pore functionality and water stability is crucial for potential applications related to environmental remediation. Pore functionalization has been achieved in a 2-fold interpenetrated, mixed-ligand Cd(II)-framework [Cd1.5(L)2(bpy)(NO3)]·2DMF·2H2O (CSMCRI-5) (HL = 4-(4-carboxyphenyl)-1,2,4-triazole, bpy = 4,4'-bipyridine, DMF = dimethylformamide, CSMCRI = Central Salt & Marine Chemicals Research Institute) by utilizing a bifunctional ligand HL. The bpy-pillared framework, containing diverse Cd(II) nodes, optimum sized voids, and free N-atom affixed one-dimensional porous channels, shows notable structural robustness in diverse organic solvents and water. In spite of a negligible surface area, the activated MOF (5a) exhibits good CO2 uptake and highly selective CO2 adsorption over N2 (259.94) and CH4 (14.34) alongside minor loss during multiple CO2 adsorption-desorption cycles. Luminescence studies demonstrate extremely selective and ultrafast sensing of Fe3+ ions in the aqueous phase with notable quenching (1.13 × 104 M-1) as well as an impressive 98 ppb limit of detection (LOD). Importantly, Fe3+ detection is exclusively retained under simulated physiological conditions. The framework further serves as a quick-responsive scaffold for toxic CrO42- and Cr2O72- anions, where individual quenching constants (CrO42-: 1.73 × 104 M-1; Cr2O72-: 5.42 × 104 M-1) and LOD values (CrO42-: 280 ppb; Cr2O72-: 320 ppb) rank among the best sensory MOFs for aqueous phase detection of Cr(VI) species. It is imperative to stress vivid monitoring of all these aqueous pollutants by a handy paper-strip method, besides outstanding applicability of 5a toward their recyclable detection. Mechanism of selective quenching is comprehensively investigated in light of the absorption of the excitation/emission energy of the host framework by an individual studied analyte.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Senthilkumar
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Sonal Rajput
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Zhu H, Han C, Li YH, Cui GH. Two new coordination polymers containing long flexible bis(benzimidazole) ligand as luminescent chemosensors for acetylacetone and Hg(II) ions detection. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121132] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Yang DD, Lu LP, Zhu ML. Structural diversity, magnetic properties, and luminescence sensing based Ni( ii)/Zn( ii) coordination polymers of the semirigid 3,3′-((5-carboxy-1,3-phenylene)bis(oxy))dibenzate ligand. CrystEngComm 2020. [DOI: 10.1039/c9ce01998g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Four novel CPs were synthesized and two Zn(ii)-CPs can be used as fluorescent probes for the detection of CrO42−/Cr2O72−.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- People's Republic of China
| | - Li-Ping Lu
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- People's Republic of China
| | - Miao-Li Zhu
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- People's Republic of China
| |
Collapse
|
31
|
Gao W, Zhou AM, Wei H, Wang CL, Liu JP, Zhang XM. Water-stable LnIII-based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six Ln-CPs were synthesized: Dy-CP shows slow magnetic relaxation, and Eu-CP and Tb-CP exhibit recyclable and multi-responsive sensing for Fe3+, MnO4−, CrVI-anions (CrO42−, Cr2O72−) and TNP in an aqueous system.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Ai-Mei Zhou
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Han Wei
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| |
Collapse
|
32
|
Li Z, Zhan Z, Hu M. A luminescent terbium coordination polymer as a multifunctional water-stable sensor for detection of Pb 2+ ions, PO 43− ions, Cr 2O 72− ions, and some amino acids. CrystEngComm 2020. [DOI: 10.1039/d0ce01101k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is the first Ln-CP fluorescence probe for synchronous determination of Tyr and Trp in the presence of other amino acids.
Collapse
Affiliation(s)
- Zhang Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Zhiying Zhan
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|
33
|
Guo Q, Ma T, Zhou L, Ma JX, Yang J, Yang Q. Efficient detection of Cr 3+ and Cr 2O 72− using a Zn( ii) luminescent metal–organic framework. NEW J CHEM 2020. [DOI: 10.1039/c9nj05999g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed a new luminescent metal–organic framework, [Zn2(TCBPDC)0.5(H2O)2]n·G (G = guest molecules), and realized an efficiently luminescent sensing for Cr3+ and Cr2O72−.
Collapse
Affiliation(s)
- Qi Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Tingting Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Liuqing Zhou
- Department of Otorhinolaryngology
- People's Hospital of Ningxia Hui Autonomous Region
- Yinchuan 750002
- China
| | - Jing-xin Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Qingfeng Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|
34
|
Liu Y, Xin S, Jiang B. The enhanced effect of oxalic acid on the electroreduction of Cr(VI) via formation of intermediate Cr(VI)-oxalate complex. ENVIRONMENTAL TECHNOLOGY 2020; 41:430-439. [PMID: 30010507 DOI: 10.1080/09593330.2018.1499815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
In this study, the enhanced effect of oxalic acid (Ox) on Cr(VI) electroreduction was evaluated. It was found that for Cr(VI)-contaminated solution ([Cr(VI)]0 = 1.0 mM, pH = 3.0), addition of 5.0 mM Ox can significantly increase Cr(VI) reduction from 0.36 to 1.0 mM within 90 min electrolysis reaction, accompanying with the increase of current efficiency from 19% to 53%. Increasing initial Ox concentration (0-10 mM) and electric current (10-40 mA) facilitated Cr(VI) reduction, whereas it was inhibited with decreasing solution pH value (2.0-3.5) and elevating Cr(VI) concentration (0.1-2.0 mM), respectively. Results show that reactive electron was the primary reductant for the heterogeneous reduction of Cr(VI) on the cathode. In addition, Ox can also serve as an electron donor for the homogeneous reduction of Cr(VI). During this process, the formation of Cr(VI)-oxalate complex is indispensable for the enhanced Cr(VI) reduction. The coordination of Ox with Cr(VI) did not only make the structure of Cr(VI) more distorted but also improved the reactivity of Cr(VI) in Cr(VI)-oxalate complex toward reduction reaction. In general, this study provides an energy-efficient and environmentally benign strategy for the treatment of Ox and Cr(VI) co-contaminated wastewater.
Collapse
Affiliation(s)
- Yijie Liu
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, People's Republic of China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR People's Republic of China
| | - Shuaishuai Xin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR People's Republic of China
| | - Bo Jiang
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, People's Republic of China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR People's Republic of China
| |
Collapse
|
35
|
Liu JJ, Que QT, Liu D, Suo H, Liu J, Xia SB. A multifunctional photochromic metal–organic framework with Lewis acid sites for selective amine and anion sensing. CrystEngComm 2020. [DOI: 10.1039/d0ce00560f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bipyridinium-based MOF was prepared, which exhibits reversible photochromic properties, good luminescence sensing ability for Cr2O72−, and can be considered an excellent colorimetric sensor for the selective detection of amine vapors.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| | - Qi-Tao Que
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| | - Dan Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| | - Hongbo Suo
- School of Pharmacy
- Liaocheng University
- Liaocheng
- China
| | - Jiaming Liu
- School of Metallurgy Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
| | - Shu-Biao Xia
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
36
|
Xu TY, Li JM, Han YH, Wang AR, He KH, Shi ZF. A new 3D four-fold interpenetrated dia-like luminescent Zn(ii)-based metal–organic framework: the sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol. NEW J CHEM 2020. [DOI: 10.1039/c9nj06056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A four-fold interpenetrating Zn-MOF as a multi-responsive fluorescent sensor for Fe3+, Cr2O72−, and CrO42− ions in water, and NB in ethanol is reported.
Collapse
Affiliation(s)
- Tian-Yang Xu
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Jia-Ming Li
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Ya-Hui Han
- Sichuan Vocational College of Chemical Technology
- Luzhou 646000
- People's Republic of China
| | - Ai-Rong Wang
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Kun-Huan He
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| | - Zhong-Feng Shi
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- People's Republic of China
| |
Collapse
|
37
|
Liu X, Dong H, Zeng Q, Yang X, Zhang D. Synergistic Effects of Reduced Nontronite and Organic Ligands on Cr(VI) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13732-13741. [PMID: 31692337 DOI: 10.1021/acs.est.9b04769] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Widespread iron-bearing clay minerals are potential materials that can reduce and immobilize Cr(VI) as insoluble Cr2O3/Cr(OH)3. The kinetics of this process is controlled by various environmental factors, yet the effects of such factors on Cr(VI) transformation by iron-bearing clays are poorly understood. Herein, we report the synergistic effects of reduced nontronite (rNAu-2) and environmentally prevalent organic ligands on Cr(VI) reduction under near-neutral pH conditions. The presence of ligands belonging to α-hydroxyl or carbonyl carboxylates, such as tartrate, malate, lactate, pyruvate, and mandelate, significantly promoted the rate and extent of Cr(VI) reduction by rNAu-2, likely because of the formation of Cr(V)-ligand complexes and resulting electron transfer from the ligand to Cr(V). In contrast, ligands containing carboxyl groups only, such as succinate and propionate, had a slightly inhibitory or no effect, likely because of their weak complexing ability with Cr(V) and lack of electron transfer from the ligand to Cr(V). In addition, α-hydroxyl carboxylates are probably more easily oxidized by Cr(V)/Cr(IV) than carboxylates. Soluble Cr(III)-organic complexes were the dominant products of Cr(VI) reduction in the presence of tartrate and malate. This study highlights the importance of organic ligands in the biogeochemical cycling of chromium and has significant implications for chromium remediation in contaminated environments.
Collapse
|
38
|
Yang DD, Lu LP, Zhu ML. Structural diversity, magnetic properties and luminescence of Ni II, Co II and Zn II coordination polymers derived from 3,3'-[(5-carboxy-1,3-phenylene)bis(oxy)]dibenzoic acid and 1,10-phenanthroline. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1580-1592. [PMID: 31802747 DOI: 10.1107/s2053229619014451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 11/11/2022]
Abstract
Three novel coordination polymers (CPs), namely poly[[di-μ-aqua-bis{μ4-3,3'-[(5-carboxylato-1,3-phenylene)bis(oxy)]dibenzoato-κ5O1:O1',O3:O5:O5'}bis(1,10-phenanthroline-κ2N,N')trinickel(II)] dimethylformamide 1.5-solvate trihydrate], {[Ni3(C21H11O8)2(C12H8N2)2(H2O)2]·1.5C3H7NO·3H2O}n, (I), poly[[di-μ-aqua-bis{μ4-3,3'-[(5-carboxylato-1,3-phenylene)bis(oxy)]dibenzoato-κ5O1:O1',O3:O5:O5'}bis(1,10-phenanthroline-κ2N,N')tricobalt(II)] diethylamine disolvate tetrahydrate], {[Co3(C21H11O8)2(C12H8N2)2(H2O)2]·2C2H7N·4H2O}n, (II), and catena-poly[[aqua(1,10-phenanthroline-κ2N,N')zinc(II)]-μ-5-(3-carboxyphenoxy)-3,3'-oxydibenzoato-κ2O1:O3], [Zn(C21H12O8)(C12H8N2)(H2O)]n, (III), have been synthesized by the reaction of different metal ions (Ni2+, Co2+ and Zn2+), 3,3'-[(5-carboxy-1,3-phenylbis(oxy)]dibenzoic acid (H3cpboda) and 1,10-phenanthroline (phen) under solvothermal conditions. All the CPs were characterized by elemental analysis, single-crystal and powder X-ray diffraction, FT-IR spectroscopy and thermogravimetric analysis. Complexes (I) and (II) have isomorphous structures, featuring similar linear trinuclear structural units, in which the central NiII/CoII atom is located on an inversion centre with a slightly distorted octahedral [NiO6]/[CoO6] geometry. This comprises four carboxylate O-atom donors from two cpboda3- ligands and two O-atom donors from bridging water molecules. The terminal NiII/CoII groups are each connected to the central NiII/CoII cation through two μ1,3-carboxylate groups from two cpboda3- ligands and one water bridge, giving rise to linear trinuclear [M3(μ2-H2O)2(RCOO)4] (M = Ni2+/Co2+) secondary building units (SBUs) and the SBUs develop two-dimensional-networks parallel to the (100) plane via cpboda3- ligands with new (32·4)2(32·83·9)2(34·42.82·94·103) topological structures. Zinc complex (III) displays one-dimensional coordination chains and the five-coordinated Zn atom forms a distorted square-pyramidal [ZnO3N2] geometry, which is completed by two carboxylate O-atom donors from two distinct Hcpboda2- ligands, one O atom from H2O and two N atoms from a chelating phen ligand. Magnetically, CP (I) shows weak ferromagnetic interactions involving the carboxylate groups, and bridging water molecules between the nickel(II) ions, and CP (II) shows antiferromagnetic interactions between the Co2+ ions. The solid-state luminescence properties of CP (III) were examined at ambient temperature and the luminescence sensing of Cr2O72-/CrO42- anions in aqueous solution for (III) has also been investigated.
Collapse
Affiliation(s)
- Dong Dong Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Li Ping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Miao Li Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
39
|
Li X, Tang J, Liu H, Gao K, Meng X, Wu J, Hou H. A Highly Sensitive and Recyclable Ln‐MOF Luminescent Sensor for the Efficient Detection of Fe
3+
and Cr
VI
Anions. Chem Asian J 2019; 14:3721-3727. [DOI: 10.1002/asia.201900936] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/19/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao Li
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jixin Tang
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Han Liu
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Kuan Gao
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xiangru Meng
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jie Wu
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Hongwei Hou
- Department of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
40
|
Biswas A, Sharma D, Tyagi PK, Mandal A. Physio-biochemical, antioxidant and oxidative stability of Turkey meat-fed diet incorporated with different level of organic chromium. Anim Biotechnol 2019; 32:106-112. [PMID: 31516069 DOI: 10.1080/10495398.2019.1661255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate the effects of organic chromium (Cr) on physico-biochemical and oxidative stability of turkey meat. Ninety-six (16th weeks) male turkeys were distributed into 16 groups (4 diet × 4 replicates × 6 birds each). Four dietary treatments (T1, T2, T3 and T4) were formulated with supplementation of 0.0, 250, 500 and 750 µg Cr/kg diets, respectively. Cholesterol and fat contents in meat reduced (p < 0.05) in T4 (750 µg Cr/kg) but no difference was observed in pH and drip loss. No significant effect was recorded on water holding capacity (WHC) and extract release volume (ERV) of fresh meat but the effect (p < 0.05) was observed on WHC and ERV in refrigerated meat. No significant difference was observed in DPPH (1, 1-diphenyl-2-picrylhydrazy) and ABTS (2, 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) of fresh breast and thigh meat but effect (p < 0.05) was noticed in refrigerated meat of turkey fed T4. Lipid oxidation (free fatty acids and Thio-barbituric acid reactive substances-TBARS) were improved in fresh as well as refrigerated meat from birds fed diet supplemented with 750 µg Cr/kg (T4). Whereas, peroxide value was improved (p < 0.05) only in refrigerated meat. Thus, it may be concluded that inclusion of Cr at 750 µg/kg diet with basal diet improved in desirable physio-biochemical properties, antioxidant and oxidative stability of male turkey meat under cold chain.
Collapse
Affiliation(s)
- Avishek Biswas
- Avian Nutrition and Feed Technology Division, ICAR-Central Avian Research Institute, Izatnagar, India
| | - Divya Sharma
- Avian Nutrition and Feed Technology Division, ICAR-Central Avian Research Institute, Izatnagar, India
| | - Pramod K Tyagi
- Avian Nutrition and Feed Technology Division, ICAR-Central Avian Research Institute, Izatnagar, India
| | - Asitbaran Mandal
- Avian Nutrition and Feed Technology Division, ICAR-Central Avian Research Institute, Izatnagar, India
| |
Collapse
|
41
|
Abstract
In this manuscript, we describe medical applications of each first-row transition metal including nutritional, pharmaceutical, and diagnostic applications. The 10 first-row transition metals in particular are found to have many applications since there five essential elements among them. We summarize the aqueous chemistry of each element to illustrate that these fundamental properties are linked to medical applications and will dictate some of nature’s solutions to the needs of cells. The five essential trace elements—iron, copper, zinc, manganese, and cobalt—represent four redox active elements and one redox inactive element. Since electron transfer is a critical process that must happen for life, it is therefore not surprising that four of the essential trace elements are involved in such processes, whereas the one non-redox active element is found to have important roles as a secondary messenger.. Perhaps surprising is the fact that scandium, titanium, vanadium, chromium, and nickel have many applications, covering the entire range of benefits including controlling pathogen growth, pharmaceutical and diagnostic applications, including benefits such as nutritional additives and hardware production of key medical devices. Some patterns emerge in the summary of biological function andmedical roles that can be attributed to small differences in the first-row transition metals.
Collapse
|
42
|
Four Zn(II)–organic frameworks as luminescent probe for highly selectivity detection of CrVI ions and antibiotics. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Ma JJ, Liu WS. Effective luminescence sensing of Fe 3+, Cr 2O 72-, MnO 4- and 4-nitrophenol by lanthanide metal-organic frameworks with a new topology type. Dalton Trans 2019; 48:12287-12295. [PMID: 31342032 DOI: 10.1039/c9dt01907c] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lanthanide MOFs (Ln-MOFs), {[Ln2(L)2(H2O)2]·5H2O·6DMAC}n, [Ln||| = Eu(1) and Tb(2); H3L = 4,4'-(((5-carboxy-1,3-phenylene)bis(azanediyl))bis(carbonyl)) dibenzoic acid, DMAC = N,N'-dimethylacetamide], with a new topology type have been isolated. Single crystal X-ray diffraction indicates that complexes 1 and 2 are isostructural with binuclear [Eu2(COO)7]n secondary building units as 7-connected nodes and H3L ligands as 3-connected nodes and can be viewed as a (5,7)-connected 3D framework with a new topological point symbol of {32·44·54} {34·46·56·65}. Complexes 1 and 2 exhibit an excellent luminescence sensing response to inorganic ions Fe3+, Cr2O72-, MnO4- and 4-nitrophenol, with a low detection limit and high Ksv value. Interestingly, when the MnO4- ions are detected, the color of the solid sample is observed to change from yellow to brown, visually indicating luminescence induction, which makes the process of detecting MnO4- ions simpler and more practical. Moreover, by using time-resolved photoluminescence techniques, complex 1 can effectively eliminate background fluorescence interference during detection and improve detection accuracy. Solvent luminescence studies, pH stability and PXRD data indicate that complexes 1 and 2 can be used as excellent water-stable multi-response luminescent sensors for detecting a wide variety of toxic substances. In addition, the mechanism of selective detection is explained by the energy competition between the excitation of complexes 1 and 2 and the ultraviolet absorption of the responsive substance.
Collapse
Affiliation(s)
- Jing-Jing Ma
- Lanzhou University, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou 730000, China.
| | - Wei-Sheng Liu
- Lanzhou University, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou 730000, China.
| |
Collapse
|
44
|
Liang X, Jia Y, Zhan Z, Hu M. A highly selective multifunctional Zn‐coordination polymer sensor for detection of Cr (III), Cr (VI) ion, and TNP molecule. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4988] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoyu Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| | - Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| | - Zhiying Zhan
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| |
Collapse
|
45
|
Jiang B, Gong Y, Gao J, Sun T, Liu Y, Oturan N, Oturan MA. The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:205-226. [PMID: 30445352 DOI: 10.1016/j.jhazmat.2018.10.070] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
The detoxification process mediated by carboxylic acids (CAs) has received considerable spotlights since CAs are clean reagent and ubiquitous in the natural environments and effluents. Here, we present an exhaustive review on surface-bound/dissolved metals-catalyzed Cr(VI) reduction by CAs and CAs-mediated Cr(VI) reduction by many highly/poorly reductive reagents. The overall mechanisms of Cr(VI) reduction are mainly associated with the coordination of CAs with surface-bound/dissolved metals or Cr(VI,V,IV) species and the electron donating abilities of CAs. Additionally, the general decays of intermediate Cr(V,IV) complexes are clearly emerged in the Cr(VI) reduction processes. The performance of various reaction systems for Cr(VI) reduction that is greatly dependent on the operation parameters, including solution pH, reagent concentration, temperature, coexisting ions and gas atmosphere, are also critically commented. From the study survey presented herein, CAs-mediated Cr(VI) reduction processes exhibit good potential for remediation of various Cr(VI)-contaminated waters/sites. However, there is still a need to address the remained bottle-necks and challenges for the remediation of Cr(VI) mediated by CAs in the related natural attenuation cases and the treatment of industrial effluents. Overall, the present review offers the comprehensive understanding of the Cr(VI) reduction mediated by CAs and provide the engineering community with the guidelines for Cr(VI) remediation in the real-world applications.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; Laboratoire Géomatériaux et Environnement, EA 4508, 5 Bd Descartes, Université Paris-Est, 77454 Marne-la-Vallée, Cedex 2, France.
| | - Yifan Gong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jianan Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Tong Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement, EA 4508, 5 Bd Descartes, Université Paris-Est, 77454 Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement, EA 4508, 5 Bd Descartes, Université Paris-Est, 77454 Marne-la-Vallée, Cedex 2, France
| |
Collapse
|
46
|
Yang DD, Lu LP, Zhu ML. Structural diversity, magnetic property, or luminescence sensing of Co(ii) and Cd(ii) coordination polymers derived from designed 3,3′-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid. Dalton Trans 2019; 48:10220-10234. [DOI: 10.1039/c9dt01736d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three Co(ii)-CPs and two Cd(ii)-CPs were synthesized and the Cd(ii)-CPs can detect CrO42− and Cr2O72− anions in aqueous solution.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- People's Republic of China
| | - Li-Ping Lu
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- People's Republic of China
| | - Miao-Li Zhu
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- People's Republic of China
| |
Collapse
|
47
|
Nie X, Zhang Z, Wang CH, Fan YS, Meng QY, You YZ. Interactions in DNA Condensation: An Important Factor for Improving the Efficacy of Gene Transfection. Bioconjug Chem 2018; 30:284-292. [DOI: 10.1021/acs.bioconjchem.8b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | | | | | | | - Ye-Zi You
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
48
|
Kotani H, Kaida S, Ishizuka T, Mieda K, Sakaguchi M, Ogura T, Shiota Y, Yoshizawa K, Kojima T. Importance of the Reactant-State Potentials of Chromium(V)–Oxo Complexes to Determine the Reactivity in Hydrogen-Atom Transfer Reactions. Inorg Chem 2018; 57:13929-13936. [DOI: 10.1021/acs.inorgchem.8b02453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Suzue Kaida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kaoru Mieda
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Miyuki Sakaguchi
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishi-ku, Kyoto 615-8520, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
49
|
Liu Y, Ma J, Xu C, Yang Y, Xia M, Jiang H, Liu W. A water-stable lanthanide coordination polymer as a multiresponsive luminescent sensor for Fe 3+, Cr(vi) and 4-nitrophenol. Dalton Trans 2018; 47:13543-13549. [PMID: 30204814 DOI: 10.1039/c8dt02202j] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Constructing water stable lanthanide coordination polymers (Ln-CPs) is of great importance for practical applications in biological and environmental areas and necessary for systematic research on the relationship between the properties of Ln-CPs and structures of linker ligands. A two-dimensional (2D) Eu coordination polymer (Eu-CP) {[Eu(L)(HCOO)]·H2O}n (H2L = isomer of 5-((pyridin-3-yloxy)methyl)isophthalic acid) is synthesized by the reaction of Eu(NO3)3·6H2O and H2L and heating at 140 °C. Single crystal X-ray diffraction analysis indicates that the Eu-CP presents a 2D network structure formed by binuclear metal clusters and bridged linkers COO- and HCOO-. The luminescence properties of the Eu-CP are explored at room temperature in the solid-state. The Eu-CP emits bright and stable red light due to the antenna effect from the ligand to the metal ion. The characteristic emission peaks of Eu3+ can be observed in its spectra. The luminescence intensity of the Eu-CP can be sensitively quenched by inorganic ions Fe3+, CrO42-, and Cr2O72- and the organic molecule 4-nitrophenol (4-NP). The Eu-CP can be a multiresponsive luminescent sensor in the water phase. Solvent luminescence investigation and PXRD data demonstrate that the Eu-CP exhibits excellent water stability. Therefore, all the sensing experiments are carried out in the water system. This multi-responsive luminescent sensor can detect Fe3+, Cr(vi) or 4-NP with high sensitivity and low detection limits in aqueous solution. Furthermore, the mechanism for the selective sensing of Fe3+, Cr(vi) or 4-NP is also explored which can mainly be explained by energy competition between the absorption of the analytes and the excitation of the Eu-CP.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jiang B, He H, Liu Y, Tang Y, Luo S, Wang Z. pH-dependent roles of polycarboxylates in electron transfer between Cr(VI) and weak electron donors. CHEMOSPHERE 2018; 197:367-374. [PMID: 29407807 DOI: 10.1016/j.chemosphere.2018.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
This study reports that the redox reactions between weak electron donors and Cr(VI) can be significantly accelerated by many environmentally occurring or industrially produced polycarboxylates (PolyCAs). The results demonstrate that oxalic acid (OA) can act as a redox mediator to accelerate the reduction of Cr(VI) by As(III) in pH range of 2.0-5.0, as well as a reductant donating electron for Cr(VI) reduction at pH < 4.0. Density functional theory calculation results indicate that the coordination of OA with Cr(VI) can remarkably enhance the reactivity of the CrO bond in HCrO4- toward oxygen atom transfer or the protonation of oxo groups during Cr(VI) reduction. Moreover, the ligand field effect can also cause instability in the tetrahedral Cr(VI) species, which probably lowers the reaction barrier in the transformation of tetrahedral Cr(VI) to octahedral Cr(III), and therefore favors the reduction of Cr(VI) to Cr(III). Similar to OA, other aliphatic and amino PolyCAs can also accelerate the reduction of Cr(VI), which depends significantly on both the electron transfer capabilities of PolyCAs and their abilities to coordinate chromium species. In general, our findings indicate the novel effect of the interplay between PolyCAs and chromium species on Cr(VI) reduction and provide significant information to develop remediation strategies for Cr(VI) contamination.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China; State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety, Environmental Technology, Beijing, 102206, China.
| | - Haihong He
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Zhaohui Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; International Center for Balanced Land Use (ICBLU), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|