1
|
Rina YA, Schmidt JAR. Alpha-metalated N, N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications. Dalton Trans 2024. [PMID: 38757291 DOI: 10.1039/d4dt00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This perspective summarizes our group's extensive research in the realm of organometallic lanthanide complexes, while also placing the catalytic reactions supported by these species within the context of known lanthanide catalysis worldwide, with a specific focus on phosphorus-based catalytic reactions such as intermolecular hydrophosphination and hydrophosphinylation. α-Metalated N,N-dimethylbenzylamine ligands have been utilized to generate homoleptic lanthanide complexes, which have subsequently proven to be highly active lanthanum-based catalysts. The main goal of our research program has been to enhance the catalytic efficiency of lanthanum-based complexes, which began with initial successes in the stoichiometric synthesis of organometallic lanthanide complexes and utilization of these species in catalytic hydrophosphination reactions. Not only have these species supported traditional lanthanide catalysis, such as the hydrophosphination of heterocumulenes like carbodiimides, isocyanates, and isothiocyanates, but they have also been effective for a plethora of catalytic reactions tested thus far, including the hydrophosphinylation and hydrophosphorylation of nitriles, hydrophosphination and hydrophosphinylation of alkynes and alkenes, and the heterodehydrocoupling of silanes and amines. Each of these catalytic transformations is meritorious in its own right, offering new synthetic routes to generate organic scaffolds with enhanced functionality while concurrently minimizing both waste generation and energy consumption. Objectives: We aim for the research summary presented herein to inspire and encourage other researchers to investigate f-element based stoichiometric and catalytic reactions. Our efforts in this field began with the recognition that potassium salts of benzyldimethylamine preferred deprotonation at the α-position, rather than the ortho-position, and we wondered if this regiochemistry would be retained in the formation of lanthanide complexes. The pursuit of this simple idea led first to a series of structurally fascinating homoleptic organometallic lanthanide complexes with surprisingly good stability. Fundamental studies of the protonolysis chemistry of these complexes ultimately revealed highly versatile lanthanide-based precatalysts that have propelled a catalytic investigation spanning more than a decade. We anticipate that this summative perspective will animate the synthetic as well as biological communities to consider La(DMBA)3-based catalytic methods in the synthesis of functionalized organic scaffolds as an atom-economic, convenient, and efficient methodology. Ultimately, we envision our work making a positive impact on the advancement of novel chemical transformations and contributing to progress in various fields of science and technology.
Collapse
Affiliation(s)
- Yesmin Akter Rina
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| | - Joseph A R Schmidt
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| |
Collapse
|
2
|
Mahmudov KT, Huseynov FE, Aliyeva VA, Guedes da Silva MFC, Pombeiro AJL. Noncovalent Interactions at Lanthanide Complexes. Chemistry 2021; 27:14370-14389. [PMID: 34363268 DOI: 10.1002/chem.202102245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π-π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.
Collapse
Affiliation(s)
- Kamran T Mahmudov
- University of Lisbon Higher Technical Institute: Universidade de Lisboa Instituto Superior Tecnico, CQE, R., 1009 - 001, Lisbon, PORTUGAL
| | - Fatali E Huseynov
- Baku State University, Department of Ecology and Soil Sciences, AZERBAIJAN
| | | | | | | |
Collapse
|
3
|
Abstract
Lanthanides play an important role in modern technology because of their outstanding optical, electronic, and magnetic properties. Their current hydrometallurgical processing involves lixiviation, leading to concentrates of elements whose separation requires exhaustive procedures because of their similar chemical properties. In this sense, a new nanotechnological approach is here discussed, involving the use of iron oxide nanoparticles functionalized with complexing agents, such as diethylenetriaminepentaacetic acid (DTPA), for carrying out the magnetic extraction and separation of the lanthanide ions in aqueous solution. This strategy, also known as magnetic nanohydrometallurgy (MNHM), was first introduced in 2011 for dealing with transition metal recovery in the laboratory, and has been recently extended to the lanthanide series. This technology is based on lanthanide complexation and depends on the chemical equilibrium involved. It has been better described in terms of Langmuir isotherms, considering a uniform distribution of the metal ions over the nanoparticles surface, as evidenced by high angle annular dark field microscopy. The observed affinity parameters correlate with the lanthanide ion contraction series, and the process dynamics have been studied by monitoring the nanoparticles migration under an applied magnetic field (magnetophoresis). The elements can be reversibly captured and released from the magnetically confined nanoparticles, allowing their separation by a simple acid-base treatment. It can operate in a circular scheme, facilitated by the easy magnetic recovery of the extracting agents, without using organic solvents and ionic exchange columns. MNHM has been successfully tested for the separation of the lanthanide elements from monazite mineral, and seems a promising green nanotechnology, particularly suitable for urban mining.
Collapse
|
4
|
Cota I. Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2016-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBiodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ε-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometalliccomplexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.
Collapse
|
5
|
Liddle ST. The Renaissance of Non-Aqueous Uranium Chemistry. Angew Chem Int Ed Engl 2015; 54:8604-41. [PMID: 26079536 DOI: 10.1002/anie.201412168] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This Review 1) introduces the reader to some of the specialist theories of the area, 2) covers all-important starting materials, 3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, 4) describes advances in the area of single-molecule magnetism, and 5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes.
Collapse
Affiliation(s)
- Stephen T Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK).
| |
Collapse
|
6
|
|
7
|
Liu JF, Pan FX, Yao S, Min X, Cui D, Sun ZM. Syntheses, Structure, and Properties of Mixed Cp–Amidinate Rare-Earth-Metal(III) Complexes. Organometallics 2014. [DOI: 10.1021/om400856d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-Feng Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Fu-Xing Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Shuang Yao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
| | - Xue Min
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Dongmei Cui
- Changchun Institute of Applied Chemistry, State Key Laboratory
of Polymer Physics and Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
| | - Zhong-Ming Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
| |
Collapse
|
8
|
Jones MB, Gaunt AJ. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem Rev 2012; 113:1137-98. [PMID: 23130707 DOI: 10.1021/cr300198m] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew B Jones
- Inorganic, Isotope, and Actinide Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
9
|
Jian Z, Petrov AR, Hangaly NK, Li S, Rong W, Mou Z, Rufanov KA, Harms K, Sundermeyer J, Cui D. Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization. Organometallics 2012. [DOI: 10.1021/om300263p] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhongbao Jian
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Alex R. Petrov
- Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| | - Noa K. Hangaly
- Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| | - Shihui Li
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weifeng Rong
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Zehuai Mou
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Konstantin A. Rufanov
- Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
- Department of Chemistry, M. V. Lomonosov University of Moscow, 119992, Moscow,
Russia
| | - Klaus Harms
- Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| | - Dongmei Cui
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
10
|
Roudjane M, Kumari S, Yang DS. Electronic States and Metal–Ligand Bonding of Gadolinium Complexes of Benzene and Cyclooctatetraene. J Phys Chem A 2012; 116:839-45. [DOI: 10.1021/jp208798h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mourad Roudjane
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sudesh Kumari
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
11
|
Jian Z, Cui D. Rare-earth metal bis(alkyl)s that bear a 2-pyridinemethanamine ligand: Dual catalysis of the polymerizations of both isoprene and ethylene. Dalton Trans 2012; 41:2367-73. [DOI: 10.1039/c1dt11890k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Yuan Y, Jing X, Xiao H, Chen X, Huang Y. Zinc-based catalyst for the ring-opening polymerization of cyclic esters. J Appl Polym Sci 2011. [DOI: 10.1002/app.33956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Li D, Li S, Cui D, Zhang X, Trifonov AA. Scandium alkyl complex with phosphinimino-amine ligand: Synthesis, structure and catalysis on ethylene polymerization. Dalton Trans 2011; 40:2151-3. [DOI: 10.1039/c0dt01030h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
|
15
|
Saliu KO, Cheng J, McDonald R, Ferguson MJ, Takats J. Reactions of Scorpionate-Anchored Yttrium and Lutetium Dialkyls with Terminal Alkynes: From Bimetallic Complexes with Bridging Enynediyl Ligands to Monomeric Terminal Dialkynyl Complexes. Organometallics 2010. [DOI: 10.1021/om100393w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Affiliation(s)
- Kuburat O. Saliu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jianhua Cheng
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Robert McDonald
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J. Ferguson
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Josef Takats
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
16
|
Satapathy R, Dash BP, Maguire JA, Hosmane NS. Advances in the metallacarborane chemistry of f-block elements. Dalton Trans 2010; 39:6613-25. [DOI: 10.1039/c001994a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|