1
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Din RU, Jiao A, Qiu Y, Mohan AAM, Yuen KC, Wong HT, Wan TMH, Wong POY, Sin CF. Bortezomib Is Effective in the Treatment of T Lymphoblastic Leukaemia by Inducing DNA Damage, WEE1 Downregulation, and Mitotic Catastrophe. Int J Mol Sci 2023; 24:14646. [PMID: 37834095 PMCID: PMC10572992 DOI: 10.3390/ijms241914646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
T lymphoblastic leukemia (T-ALL) is an aggressive haematolymphoid malignancy comprising 15% of acute lymphoblastic leukemia (ALL). Although its prognosis has improved with intensive chemotherapy, the relapse/refractory disease still carries a dismal prognosis. Thus, there is an urgent need to develop novel therapy for T-ALL. Bortezomib, a 26S proteasome inhibitor, is licensed to treat plasma cell myeloma and mantle cell lymphoma. Due to its favorable side effect profile, it is a novel agent of research interest in the treatment of ALL. Despite an increasing number of clinical trials of bortezomib in T-ALL, its detailed mechanistic study in terms of DNA damage, cell cycle, and mitotic catastrophe remains elusive. Moreover, WEE1, a protein kinase overexpressed in ALL and involved in cell-cycle regulation, has been known to be a novel therapeutic target in many cancers. But the role of bortezomib in modulating WEE1 expression in ALL still remains elusive. In this study, we demonstrate the therapeutic efficacy of bortezomib on T-ALL primary samples and cell lines. Our findings reveal that bortezomib treatment induces DNA damage and downregulates WEE1, leading to G2-M cell-cycle progression with damaged DNA. This abnormal mitotic entry induced by bortezomib leads to mitotic catastrophe in T-ALL. In conclusion, our findings dissect the mechanism of action of bortezomib and provide further insights into the use of bortezomib to treat T-ALL. Our findings suggest the possibility of novel combination therapy using proteasome inhibitors together with DNA-damaging agents in the future, which may fill the research gaps and unmet clinical needs in treating ALL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chun-Fung Sin
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
3
|
Kamens JL, Nance S, Koss C, Xu B, Cotton A, Lam JW, Garfinkle EAR, Nallagatla P, Smith AMR, Mitchell S, Ma J, Currier D, Wright WC, Kavdia K, Pagala VR, Kim W, Wallace LM, Cho JH, Fan Y, Seth A, Twarog N, Choi JK, Obeng EA, Hatley ME, Metzger ML, Inaba H, Jeha S, Rubnitz JE, Peng J, Chen T, Shelat AA, Guy RK, Gruber TA. Proteasome inhibition targets the KMT2A transcriptional complex in acute lymphoblastic leukemia. Nat Commun 2023; 14:809. [PMID: 36781850 PMCID: PMC9925443 DOI: 10.1038/s41467-023-36370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.
Collapse
Affiliation(s)
- Jennifer L Kamens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cary Koss
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anitria Cotton
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeannie W Lam
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Pratima Nallagatla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelia M R Smith
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharnise Mitchell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vishwajeeth R Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wonil Kim
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - LaShanale M Wallace
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aman Seth
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nathaniel Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John K Choi
- Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Monika L Metzger
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhang M, Zhang H, Li Z, Bai L, Wang Q, Li J, Jiang M, Xue Q, Cheng N, Zhang W, Mao D, Chen Z, Huang J, Meng G, Chen Z, Chen SJ. Functional, structural, and molecular characterizations of the leukemogenic driver MEF2D-HNRNPUL1 fusion. Blood 2022; 140:1390-1407. [PMID: 35544603 PMCID: PMC9507012 DOI: 10.1182/blood.2022016241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Recurrent MEF2D fusions with poor prognosis have been identified in B-cell precursor ALL (BCP-ALL). The molecular mechanisms underlying the pathogenic function of MEF2D fusions are poorly understood. Here, we show that MEF2D-HNRNPUL1 (MH) knock-in mice developed a progressive disease from impaired B-cell development at the pre-pro-B stage to pre-leukemia over 10 to 12 months. When cooperating with NRASG12D, MH drove an outbreak of BCP-ALL, with a more aggressive phenotype than the NRASG12D-induced leukemia. RNA-sequencing identified key networks involved in disease mechanisms. In chromatin immunoprecipitation-sequencing experiments, MH acquired increased chromatin-binding ability, mostly through MEF2D-responsive element (MRE) motifs in target genes, compared with wild-type MEF2D. Using X-ray crystallography, the MEF2D-MRE complex was characterized in atomic resolution, whereas disrupting the MH-DNA interaction alleviated the aberrant target gene expression and the B-cell differentiation arrest. The C-terminal moiety (HNRNPUL1 part) of MH was proven to contribute to the fusion protein's trans-regulatory activity, cofactor recruitment, and homodimerization. Furthermore, targeting MH-driven transactivation of the HDAC family by using the histone deacetylase inhibitor panobinostat in combination with chemotherapy improved the overall survival of MH/NRASG12D BCP-ALL mice. Altogether, these results not only highlight MH as an important driver in leukemogenesis but also provoke targeted intervention against BCP-ALL with MEF2D fusions.
Collapse
Affiliation(s)
- Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Hao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Zhihui Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Ling Bai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Qianqian Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Qing Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Nuo Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Weina Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Dongdong Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Zhiming Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
5
|
Targeting matrix metallopeptidase 2 by hydroxyurea selectively kills acute myeloid mixed-lineage leukemia. Cell Death Dis 2022; 8:180. [PMID: 35396375 PMCID: PMC8993889 DOI: 10.1038/s41420-022-00989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022]
Abstract
Oncogene-induced tumorigenesis results in the variation of epigenetic modifications, and in addition to promoting cell immortalization, cancer cells undergo more intense cellular stress than normal cells and depend on other support genes for survival. Chromosomal translocations of mixed-lineage leukemia (MLL) induce aggressive leukemias with an inferior prognosis. Unfortunately, most MLL-rearranged (MLL-r) leukemias are resistant to conventional chemotherapies. Here, we showed that hydroxyurea (HU) could kill MLL-r acute myeloid leukemia (AML) cells through the necroptosis process. HU target these cells by matrix metallopeptidase 2 (MMP2) deficiency rather than subordinate ribonucleotide reductase regulatory subunit M2 (RRM2) inhibition, where MLL directly regulates MMP2 expression and is decreased in most MLL-r AMLs. Moreover, iron chelation of HU is also indispensable for inducing cell stress, and MMP2 is the support factor to protect cells from death. Our preliminary study indicates that MMP2 might play a role in the nonsense-mediated mRNA decay pathway that prevents activation of unfolding protein response under innocuous endoplasmic reticulum stress. Hence, these results reveal a possible strategy of HU application in MLL-r AML treatment and shed new light upon HU repurposing.
Collapse
|
6
|
Sin CF, Man PHM. The Role of Proteasome Inhibitors in Treating Acute Lymphoblastic Leukaemia. Front Oncol 2022; 11:802832. [PMID: 35004327 PMCID: PMC8733464 DOI: 10.3389/fonc.2021.802832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematolymphoid malignancy. The prognosis of ALL is excellent in paediatric population, however the outcome of relapse/refractory disease is dismal. Adult ALL has less favourable prognosis and relapse/refractory disease is not uncommonly encountered. Bortezomib is the first generation proteasome inhibitor licensed to treat plasma cell myeloma and mantle cell lymphoma with favourable side effect profile. Efficacy of bortezomib had been proven in other solid tumors. Clinical studies showed promising response for proteasome inhibitors in treating relapse/refractory ALL. Thus, proteasome inhibitors are attractive alternative agents for research in treating ALL. In the review article, we will introduce different proteasome inhibitors and their difference in pharmacological properties. Moreover, the mechanism of action of proteasome inhibitors on ALL will be highlighted. Finally, results of various clinical studies on proteasome inhibitors in both paediatric and adult ALL will be discussed. This review article provides the insights on the use of proteasome inhibitors in treating ALL with a summary of mechanism of action in ALL which facilitates future research on its use to improve the outcome of ALL.
Collapse
Affiliation(s)
- Chun-Fung Sin
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pui-Hei Marcus Man
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Malouf C, Antunes ETB, O'Dwyer M, Jakobczyk H, Sahm F, Landua SL, Anderson RA, Soufi A, Halsey C, Ottersbach K. miR-130b and miR-128a are essential lineage-specific codrivers of t(4;11) MLL-AF4 acute leukemia. Blood 2021; 138:2066-2092. [PMID: 34111240 DOI: 10.1182/blood.2020006610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4-driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard A Anderson
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
8
|
Jenkins TW, Downey-Kopyscinski SL, Fields JL, Rahme GJ, Colley WC, Israel MA, Maksimenko AV, Fiering SN, Kisselev AF. Activity of immunoproteasome inhibitor ONX-0914 in acute lymphoblastic leukemia expressing MLL-AF4 fusion protein. Sci Rep 2021; 11:10883. [PMID: 34035431 PMCID: PMC8149845 DOI: 10.1038/s41598-021-90451-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Proteasome inhibitors bortezomib and carfilzomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have demonstrated clinical efficacy for the treatment of acute lymphoblastic leukemia (ALL). The t(4;11)(q21;q23) chromosomal translocation that leads to the expression of MLL-AF4 fusion protein and confers a poor prognosis, is the major cause of infant ALL. This translocation sensitizes tumor cells to proteasome inhibitors, but toxicities of bortezomib and carfilzomib may limit their use in pediatric patients. Many of these toxicities are caused by on-target inhibition of proteasomes in non-lymphoid tissues (e.g., heart muscle, gut, testicles). We found that MLL-AF4 cells express high levels of lymphoid tissue-specific immunoproteasomes and are sensitive to pharmacologically relevant concentrations of specific immunoproteasome inhibitor ONX-0914, even in the presence of stromal cells. Inhibition of multiple active sites of the immunoproteasomes was required to achieve cytotoxicity against ALL. ONX-0914, an inhibitor of LMP7 (ß5i) and LMP2 (ß1i) sites of the immunoproteasome, and LU-102, inhibitor of proteasome ß2 sites, exhibited synergistic cytotoxicity. Treatment with ONX-0914 significantly delayed the growth of orthotopic ALL xenograft tumors in mice. T-cell ALL lines were also sensitive to pharmacologically relevant concentrations of ONX-0914. This study provides a strong rationale for testing clinical stage immunoproteasome inhibitors KZ-616 and M3258 in ALL.
Collapse
Affiliation(s)
- Tyler W Jenkins
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA
| | - Sondra L Downey-Kopyscinski
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- SLDK - Rancho Biosciences, San Diego, CA, USA
- GJR- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- WCC - ScribeAmerica, Huntsville Hospital, Huntsville, AL, USA
- MAI- Israel Cancer Research Fund, New York, NY, USA
| | - Jennifer L Fields
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Gilbert J Rahme
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- SLDK - Rancho Biosciences, San Diego, CA, USA
- GJR- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- WCC - ScribeAmerica, Huntsville Hospital, Huntsville, AL, USA
- MAI- Israel Cancer Research Fund, New York, NY, USA
| | - William C Colley
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA
- SLDK - Rancho Biosciences, San Diego, CA, USA
- GJR- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- WCC - ScribeAmerica, Huntsville Hospital, Huntsville, AL, USA
- MAI- Israel Cancer Research Fund, New York, NY, USA
| | - Mark A Israel
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- SLDK - Rancho Biosciences, San Diego, CA, USA
- GJR- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- WCC - ScribeAmerica, Huntsville Hospital, Huntsville, AL, USA
- MAI- Israel Cancer Research Fund, New York, NY, USA
| | - Andrey V Maksimenko
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA
| | - Steven N Fiering
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Ge M, Xu Q, Kang T, Li D, Wang R, Chen Z, Xie S, Wang W, Liu H. Deubiquitinating enzyme inhibitor alleviates cyclin A1-mediated proteasome inhibitor tolerance in mixed-lineage leukemia. Cancer Sci 2021; 112:2287-2298. [PMID: 33738896 PMCID: PMC8177811 DOI: 10.1111/cas.14892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Drug resistance is a significant obstacle to effective cancer treatment. Drug resistance develops from initially reversible drug-tolerant cancer cells, which offer therapeutic opportunities to impede cancer relapse. The mechanisms of resistance to proteasome inhibitor (PI) therapy have been investigated intensively, however the ways by which drug-tolerant cancer cells orchestrate their adaptive responses to drug challenges remain largely unknown. Here, we demonstrated that cyclin A1 suppression elicited the development of transient PI tolerance in mixed-lineage leukemia (MLL) cells. This adaptive process involved reversible downregulation of cyclin A1, which promoted PI resistance through cell-cycle arrest. PI-tolerant MLL cells acquired cyclin A1 dependency, regulated directly by MLL protein. Loss of cyclin A1 function resulted in the emergence of drug tolerance, which was associated with patient relapse and reduced survival. Combination treatment with PI and deubiquitinating enzyme (DUB) inhibitors overcame this drug resistance by restoring cyclin A1 expression through chromatin crosstalk between histone H2B monoubiquitination and MLL-mediated histone H3 lysine 4 methylation. These results reveal the importance of cyclin A1-engaged cell-cycle regulation in PI resistance in MLL cells, and suggest that cell-cycle re-entry by DUB inhibitors may represent a promising epigenetic therapeutic strategy to prevent acquired drug resistance.
Collapse
Affiliation(s)
- Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
EBF1 drives hallmark B cell gene expression by enabling the interaction of PAX5 with the MLL H3K4 methyltransferase complex. Sci Rep 2021; 11:1537. [PMID: 33452395 PMCID: PMC7810865 DOI: 10.1038/s41598-021-81000-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
PAX5 and EBF1 work synergistically to regulate genes that are involved in B lymphocyte differentiation. We used the KIS-1 diffuse large B cell lymphoma cell line, which is reported to have elevated levels of PAX5 expression, to investigate the mechanism of EBF1- and PAX5-regulated gene expression. We demonstrate the lack of expression of hallmark B cell genes, including CD19, CD79b, and EBF1, in the KIS-1 cell line. Upon restoration of EBF1 expression we observed activation of CD19, CD79b and other genes with critical roles in B cell differentiation. Mass spectrometry analyses of proteins co-immunoprecipitated with PAX5 in KIS-1 identified components of the MLL H3K4 methylation complex, which drives histone modifications associated with transcription activation. Immunoblotting showed a stronger association of this complex with PAX5 in the presence of EBF1. Silencing of KMT2A, the catalytic component of MLL, repressed the ability of exogenous EBF1 to activate transcription of both CD19 and CD79b in KIS-1 cells. We also find association of PAX5 with the MLL complex and decreased CD19 expression following silencing of KMT2A in other human B cell lines. These data support an important role for the MLL complex in PAX5-mediated transcription regulation.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Rearrangements of the histone lysine [K]-MethylTransferase 2A gene (KMT2A) gene on chromosome 11q23, formerly known as the mixed-lineage leukemia (MLL) gene, are found in 10% and 5% of adult and children ALL cases, respectively. The most common translocated genes are AFF1 (formerly AF4), MLLT3 (formerly AF9), and MLLT1 (formerly ENL). The bimodal incidence of MLL-r-ALL usually peaks in infants in their first 2 years of life and then declines thereafter during the pediatric/young adult phase until it increases again with age. MLL-rearranged ALL (MLL-r-ALL) is characterized by hyperleukocytosis, aggressive behavior with early relapse, relatively high incidence of central nervous system (CNS) involvement, and poor prognosis. RECENT FINDINGS MLL-r-ALL cells are characterized by relative resistance to corticosteroids (due to Src kinase-induced phosphorylation of annexin A2) and L-asparaginase therapy, but they are sensitive to cytarabine chemotherapy (due to increased levels of hENT1 expression). Potential therapeutic targets include FLT3 inhibitors, MEK inhibitors, HDAC inhibitors, BCL-2 inhibitors, MCL-1 inhibitors, proteasome inhibitors, hypomethylating agents, Dot1L inhibitors, and CDK inhibitors. In this review, we discuss MLL-r-ALL focusing on clinical presentation, risk stratification, drug resistance, and treatment strategies, including potential novel therapeutic targets.
Collapse
Affiliation(s)
- Firas El Chaer
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Michael Keng
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Karen K Ballen
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA.
| |
Collapse
|
12
|
Cheng X, Ge M, Zhu S, Li D, Wang R, Xu Q, Chen Z, Xie S, Liu H. mTORC1-mediated amino acid signaling is critical for cell fate determination under transplant-induced stress. FEBS Lett 2020; 595:462-475. [PMID: 33249578 DOI: 10.1002/1873-3468.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/17/2020] [Accepted: 11/21/2020] [Indexed: 01/05/2023]
Abstract
Transplantation of in vitro-manipulated cells is widely used in hematology. While transplantation is well recognized to impose severe stress on transplanted cells, the nature of transplant-induced stress remains elusive. Here, we propose that the lack of amino acids in serum is the major cause of transplant-induced stress. Mechanistically, amino acid deficiency decreases protein synthesis and nutrient consummation. However, in cells with overactive AKT and ERK, mTORC1 is not inhibited and protein synthesis remains relatively high. This impaired signaling causes nutrient depletion, cell cycle block, and eventually autophagy and cell death, which can be inhibited by cycloheximide or mTORC1 inhibitors. Thus, mTORC1-mediated amino acid signaling is critical in cell fate determination under transplant-induced stress, and protein synthesis inhibition can improve transplantation efficiency.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shouhai Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
13
|
Ge M, Li D, Qiao Z, Sun Y, Kang T, Zhu S, Wang S, Xiao H, Zhao C, Shen S, Xu Z, Liu H. Restoring MLL reactivates latent tumor suppression-mediated vulnerability to proteasome inhibitors. Oncogene 2020; 39:5888-5901. [PMID: 32733069 PMCID: PMC7471105 DOI: 10.1038/s41388-020-01408-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
MLL undergoes multiple distinct chromosomal translocations to yield aggressive leukemia with dismal outcomes. Besides their well-established role in leukemogenesis, MLL fusions also possess latent tumor-suppressive activity, which can be exploited as effective cancer treatment strategies using pharmacological means such as proteasome inhibitors (PIs). Here, using MLL-rearranged xenografts and MLL leukemic cells as models, we show that wild-type MLL is indispensable for the latent tumor-suppressive activity of MLL fusions. MLL dysfunction, shown as loss of the chromatin accumulation and subsequent degradation of MLL, compromises the latent tumor suppression of MLL-AF4 and is instrumental for the acquired PI resistance. Mechanistically, MLL dysfunction is caused by chronic PI treatment-induced epigenetic reprogramming through the H2Bub-ASH2L-MLL axis and can be specifically restored by histone deacetylase (HDAC) inhibitors, which induce histone acetylation and recruits MLL on chromatin to promote cell cycle gene expression. Our findings not only demonstrate the mechanism underlying the inevitable acquisition of PI resistance in MLL leukemic cells, but also illustrate that preventing the emergence of PI-resistant cells constitutes a novel rationale for combination therapy with PIs and HDAC inhibitors in MLL leukemias.
Collapse
Affiliation(s)
- Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Shouhai Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shifen Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunjun Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350001, Fuzhou, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
14
|
MLL-rearranged infant leukaemia: A 'thorn in the side' of a remarkable success story. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194564. [PMID: 32376390 DOI: 10.1016/j.bbagrm.2020.194564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Advances in treatment of childhood leukaemia has led to vastly improved survival rates, however some subtypes such as those characterised by MLL gene rearrangement (MLL-r), especially in infants, continue to have high relapse rates and poor survival. Natural history and molecular studies indicate that infant acute lymphoblastic leukaemia (ALL) originates in utero, is distinct from childhood ALL, and most cases are caused by MLL-r resulting in an oncogenic MLL fusion protein. Unlike childhood ALL, only a very small number of additional mutations are present in infant ALL, indicating that MLL-r alone may be sufficient to give rise to this rapid onset, aggressive leukaemia in an appropriate fetal cell context. Despite modifications in treatment approaches, the outcome of MLL-r infant ALL has remained dismal and a clear understanding of the underlying biology of the disease is required in order to develop appropriate disease models and more effective therapeutic strategies.
Collapse
|
15
|
Ge M, Qiao Z, Kong Y, Lu H, Liu H. Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia. Cancer Sci 2020; 111:1279-1290. [PMID: 32058648 PMCID: PMC7156829 DOI: 10.1111/cas.14351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Proteasome inhibitors significantly improve cancer outcomes, but their use is eventually followed by proteasome inhibitor resistance and relapse. Current understanding of proteasome inhibitor resistance is limited to cell‐autonomous mechanisms; whether non–autonomous mechanisms can be implicated in the development of proteasome inhibitor resistance is unclear. Here, we show that proteasome inhibitor tolerance can be transmitted non–autonomously through exosome‐mediated intercellular interactions. We revealed that reversible proteasome inhibitor resistance can be transmitted from cells under therapy stress to naïve sensitive cells through exosome‐mediated cell cycle arrest and enhanced stemness in mixed‐lineage leukemia cells. Integrated multi‐omics analysis using the Tied Diffusion through Interacting Events algorithm identified several candidate exosomal proteins that may serve as predictors for proteasome inhibitor resistance and potential therapeutic targets for treating refractory mixed‐lineage leukemia. Furthermore, inhibiting the secretion of exosomes is a promising strategy for reversing proteasome inhibitor resistance in vivo, which provides a novel proof of principle for the treatment of other refractory or relapsed cancers.
Collapse
Affiliation(s)
- Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Kong
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Zhu S, Cheng X, Wang R, Tan Y, Ge M, Li D, Xu Q, Sun Y, Zhao C, Chen S, Liu H. Restoration of microRNA function impairs MYC-dependent maintenance of MLL leukemia. Leukemia 2020; 34:2484-2488. [PMID: 32094460 PMCID: PMC7449869 DOI: 10.1038/s41375-020-0768-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Shouhai Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Xiaoyan Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Ruiheng Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Yuting Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Dan Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Qiongyu Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Yan Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Chunjun Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Han Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200025, Shanghai, China.
| |
Collapse
|
17
|
Cellular Reprogramming as a Therapeutic Target in Cancer. Trends Cell Biol 2019; 29:623-634. [PMID: 31153655 DOI: 10.1016/j.tcb.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022]
Abstract
Cancer heterogeneity has long been recognized as an important clinical determinant of patient outcomes and, thus, many new cancer treatments have been designed to target these different cells. Despite the short-term achievements of current therapies, including chemotherapy, antiangiogenesis therapy, radiotherapy, and immunotherapy, the long-term success of cancer regression remains poor. Therefore, researchers have investigated a new property, cellular reprogramming, in cancer that not only contributes to the classic hallmarks of cancer, but also suggests that cancer is a dynamic event rather than a static cellular entity. Here, we discuss the mechanisms by which the cellular reprogramming of cancer cells can explain some of the phenotypic and functional heterogeneity observed among cancer cells.
Collapse
|
18
|
Yang L, Ding L, Liang J, Chen J, Tang Y, Xue H, Gu L, Shen S, Li B, Chen J. Relatively favorable prognosis for MLL-rearranged childhood acute leukemia with reciprocal translocations. Pediatr Blood Cancer 2018; 65:e27266. [PMID: 29943896 DOI: 10.1002/pbc.27266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mixed-lineage leukemia (MLL) with multifarious partner genes leads to aggressive leukemia with dismal outcomes. METHODS Using panel-based targeted sequencing, we examined 90 cases with MLL-rearranged (MLL-r) childhood acute leukemia, including 55 with acute lymphoblastic leukemia (ALL) and 35 with acute myeloid leukemia (AML). RESULTS MLL breakpoints and complete rearrangements were identified. A total of 37.8% (34/90) of patients displayed a single direct MLL fusion gene, 15.6% (14/90) carried a single reciprocal fusion, and 27.8% (25/90) had both reciprocal MLL fusion alleles. The remaining 17 MLL-r cases exhibited complex translocations with homozygous disruptions on chromosome 11 or two breakpoints on the same MLL allele with a deletion of functional regions. A total of 77 patients (45 ALL and 32 AML) received chemotherapy with a median follow-up of 2.5 years. Unexpectedly, we identified children with reciprocal MLL fusions who exhibited relatively favorable outcomes compared with those in children with complex translocations or a single direct MLL fusion allele (66.1% vs. 24.6% and 27.6%, P = 0.001). Reciprocal MLL fusion may be functionally rescued by a partially truncated MLL protein. CONCLUSION Comprehensive MLL-r analysis by targeted next-generation sequencing can provide detailed molecular information and is helpful for precise stratified treatment and clinical prognosis determination.
Collapse
Affiliation(s)
- Liu Yang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Liang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YanJing Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiliang Xue
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longjun Gu
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Shen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Li D, Hu Y, Jin Z, Zhai Y, Tan Y, Sun Y, Zhu S, Zhao C, Chen B, Zhu J, Chen Z, Chen S, Li J, Liu H. TanCAR T cells targeting CD19 and CD133 efficiently eliminate MLL leukemic cells. Leukemia 2018; 32:2012-2016. [PMID: 30046161 DOI: 10.1038/s41375-018-0212-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Yutian Hu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Zhen Jin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - You Zhai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Yuting Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Yan Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Shouhai Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Chunjun Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Bing Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Junmin Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China
| | - Han Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Collaborative Innovation Center of Systems Biomedicine, Collaborative Innovation Center of Hematology, Shanghai 200025, China.
| |
Collapse
|
20
|
Cloos J, Roeten MS, Franke NE, van Meerloo J, Zweegman S, Kaspers GJ, Jansen G. (Immuno)proteasomes as therapeutic target in acute leukemia. Cancer Metastasis Rev 2018; 36:599-615. [PMID: 29071527 PMCID: PMC5721123 DOI: 10.1007/s10555-017-9699-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Margot Sf Roeten
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels E Franke
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Princess Màxima Center, Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Nargund AM, Pham CG, Dong Y, Wang PI, Osmangeyoglu HU, Xie Y, Aras O, Han S, Oyama T, Takeda S, Ray CE, Dong Z, Berge M, Hakimi AA, Monette S, Lekaye CL, Koutcher JA, Leslie CS, Creighton CJ, Weinhold N, Lee W, Tickoo SK, Wang Z, Cheng EH, Hsieh JJ. The SWI/SNF Protein PBRM1 Restrains VHL-Loss-Driven Clear Cell Renal Cell Carcinoma. Cell Rep 2017; 18:2893-2906. [PMID: 28329682 DOI: 10.1016/j.celrep.2017.02.074] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 02/07/2023] Open
Abstract
PBRM1 is the second most commonly mutated gene after VHL in clear cell renal cell carcinoma (ccRCC). However, the biological consequences of PBRM1 mutations for kidney tumorigenesis are unknown. Here, we find that kidney-specific deletion of Vhl and Pbrm1, but not either gene alone, results in bilateral, multifocal, transplantable clear cell kidney cancers. PBRM1 loss amplified the transcriptional outputs of HIF1 and STAT3 incurred by Vhl deficiency. Analysis of mouse and human ccRCC revealed convergence on mTOR activation, representing the third driver event after genetic inactivation of VHL and PBRM1. Our study reports a physiological preclinical ccRCC mouse model that recapitulates somatic mutations in human ccRCC and provides mechanistic and therapeutic insights into PBRM1 mutated subtypes of human ccRCC.
Collapse
Affiliation(s)
- Amrita M Nargund
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Can G Pham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yiyu Dong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patricia I Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hatice U Osmangeyoglu
- Department of Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuchen Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Omer Aras
- Gerstner Sloan Kettering School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Song Han
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Toshinao Oyama
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shugaku Takeda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chelsea E Ray
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhenghong Dong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mathieu Berge
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A Ari Hakimi
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carl L Lekaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason A Koutcher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina S Leslie
- Department of Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad J Creighton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nils Weinhold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - James J Hsieh
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Zhao Y, Song WM, Zhang F, Zhou MM, Zhang W, Walsh MJ, Zhang B. Distinct distributions of genomic features of the 5’ and 3’ partners of coding somatic cancer gene fusions: arising mechanisms and functional implications. Oncotarget 2017; 8:66769-66783. [PMID: 28977995 PMCID: PMC5620135 DOI: 10.18632/oncotarget.10734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
The genomic features and arising mechanisms of coding cancer somatic gene fusions (CSGFs) largely remain elusive. In this study, we show the gene origin stratification pattern of CSGF partners that fusion partners in human cancers are significantly enriched for genes with the gene age ofEuteleostomes and with the gene family age of Bilateria. GC skew (a measurement of G, C nucleotide content bias, (G-C)/(G+C)) is a useful measurement to indicate the DNA leading strand, lagging strand, replication origin, and replication terminal and DNA-RNA R-loop formation. We find that GC skew bias at the 5 prime (5′) but not the 3 prime (3’) partners of CSGFs, coincident with the polarity feature of gene expression breadth that the 5’ partners are more ubiquitous while the 3’ fusion partners are more tissue specific in general. We reveal distinct length and composition distributions of 5’ and 3’ of CSGFs, including sequence features corresponded to the 5’ untranslated regions (UTRs), 3’ UTRs, and the N-terminal sequences of the encoded proteins. Oncogenic somatic gene fusions are most enriched for the 5’ and 3’ genes’ somatic amplification alongside a substantial proportion of other types of combinations. At the function level, 5’ partners of CSGFs appear more likely to be tumour suppressor genes while many 3’ partners appear to be proto-oncogene. Such distinct polarities of CSGFs at the evolutionary, structural, genomic and functional levels indicate the heterogeneous arsing mechanisms of CSGFs including R-loops and suggest potential novel targeted therapeutics specific to CSGF functional categories.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Fan Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Martin J. Walsh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| |
Collapse
|
23
|
Abstract
Chromosome rearrangements involving the mixed-lineage leukemia gene (MLL) create MLL-fusion proteins, which could drive both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The lineage decision of MLL-fusion leukemia is influenced by the fusion partner and microenvironment. To investigate the interplay of fusion proteins and microenvironment in lineage choice, we transplanted human hematopoietic stem and progenitor cells (HSPCs) expressing MLL-AF9 or MLL-Af4 into immunodeficient NSGS mice, which strongly promote myeloid development. Cells expressing MLL-AF9 efficiently developed AML in NSGS mice. In contrast, MLL-Af4 cells, which were fully oncogenic under lymphoid conditions present in NSG mice, displayed compromised transformation capacity in a myeloid microenvironment. MLL-Af4 activated a self-renewal program in a lineage-dependent manner, showing the leukemogenic activity of MLL-Af4 was interlinked with lymphoid lineage commitment. The C-terminal homology domain (CHD) of Af4 was sufficient to confer this linkage. Although the MLL-CHD fusion protein failed to immortalize HSPCs in myeloid conditions in vitro, it could successfully induce ALL in NSG mice. Our data suggest that defective self-renewal ability and leukemogenesis of MLL-Af4 myeloid cells could contribute to the strong B-cell ALL association of MLL-AF4 leukemia observed in the clinic.
Collapse
|
24
|
Winters AC, Bernt KM. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches. Front Pediatr 2017; 5:4. [PMID: 28232907 PMCID: PMC5299633 DOI: 10.3389/fped.2017.00004] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents-so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients.
Collapse
Affiliation(s)
- Amanda C Winters
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Kathrin M Bernt
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
25
|
Xu H, Valerio DG, Eisold ME, Sinha A, Koche RP, Hu W, Chen CW, Chu SH, Brien GL, Park CY, Hsieh JJ, Ernst P, Armstrong SA. NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis. Cancer Cell 2016; 30:863-878. [PMID: 27889185 PMCID: PMC5501282 DOI: 10.1016/j.ccell.2016.10.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023]
Abstract
The nucleoporin 98 gene (NUP98) is fused to a variety of partner genes in multiple hematopoietic malignancies. Here, we demonstrate that NUP98 fusion proteins, including NUP98-HOXA9 (NHA9), NUP98-HOXD13 (NHD13), NUP98-NSD1, NUP98-PHF23, and NUP98-TOP1 physically interact with mixed lineage leukemia 1 (MLL1) and the non-specific lethal (NSL) histone-modifying complexes. Chromatin immunoprecipitation sequencing illustrates that NHA9 and MLL1 co-localize on chromatin and are found associated with Hox gene promoter regions. Furthermore, MLL1 is required for the proliferation of NHA9 cells in vitro and in vivo. Inactivation of MLL1 leads to decreased expression of genes bound by NHA9 and MLL1 and reverses a gene expression signature found in NUP98-rearranged human leukemias. Our data reveal a molecular dependency on MLL1 function in NUP98-fusion-driven leukemogenesis.
Collapse
Affiliation(s)
- Haiming Xu
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| | - Daria G Valerio
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Meghan E Eisold
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amit Sinha
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard P Koche
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chun-Wei Chen
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - S Haihua Chu
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Gerard L Brien
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher Y Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James J Hsieh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patricia Ernst
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Scott A Armstrong
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Lin S, Luo RT, Ptasinska A, Kerry J, Assi SA, Wunderlich M, Imamura T, Kaberlein JJ, Rayes A, Althoff MJ, Anastasi J, O'Brien MM, Meetei AR, Milne TA, Bonifer C, Mulloy JC, Thirman MJ. Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. Cancer Cell 2016; 30:737-749. [PMID: 27846391 DOI: 10.1016/j.ccell.2016.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/21/2016] [Accepted: 10/12/2016] [Indexed: 01/11/2023]
Abstract
The t(4;11)(q21;q23) fuses mixed-lineage leukemia (MLL) to AF4, the most common MLL-fusion partner. Here we show that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus permitting efficient transduction of human CD34+ cells, thereby generating a model of t(4;11) pro-B acute lymphoblastic leukemia (ALL) that fully recapitulates the immunophenotypic and molecular aspects of the disease. MLL-Af4 induces a B ALL distinct from MLL-AF9 through differential genomic target binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such incongruity was also observed in t(4;11) patients in whom leukemia evaded CD19-directed therapy by undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the pathogenesis of MLL-AF4 leukemogenesis.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger T Luo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Wunderlich
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Toshihiko Imamura
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Joseph J Kaberlein
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ahmad Rayes
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark J Althoff
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John Anastasi
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Maureen M O'Brien
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amom Ruhikanta Meetei
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James C Mulloy
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Michael J Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Safdari Y, Ahmadzadeh V, Farajnia S. CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies. Invest New Drugs 2016; 34:497-512. [DOI: 10.1007/s10637-016-0349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
28
|
The molecular mechanics of mixed lineage leukemia. Oncogene 2016; 35:5215-5223. [PMID: 26923329 DOI: 10.1038/onc.2016.30] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
Mixed lineage leukemia caused by MLL fusion proteins is still a mostly incurable disease. Research on novel treatment strategies has gained momentum in the last years with the elucidation of the molecular mechanisms underlying the transforming potential of these powerful oncoproteins. This review summarizes the recent developments in this area including new attempts to treat MLL in a rational way by exploiting the biochemical vulnerabilities of the leukemogenic process.
Collapse
|
29
|
|
30
|
Wartman LD, Fiala MA, Fletcher T, Hawkins ER, Cashen A, DiPersio JF, Jacoby MA, Stockerl-Goldstein KE, Pusic I, Uy GL, Westervelt P, Vij R. A phase I study of carfilzomib for relapsed or refractory acute myeloid and acute lymphoblastic leukemia. Leuk Lymphoma 2015; 57:728-30. [PMID: 26674111 DOI: 10.3109/10428194.2015.1076930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lukas D Wartman
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Mark A Fiala
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Theresa Fletcher
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Emily R Hawkins
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Amanda Cashen
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - John F DiPersio
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Meagan A Jacoby
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Keith E Stockerl-Goldstein
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Iskra Pusic
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Geoffrey L Uy
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Peter Westervelt
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Ravi Vij
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
31
|
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) family proteins methylate lysine 4 on the histone H3 tail at important regulatory regions in the genome and thereby impart crucial functions through modulating chromatin structures and DNA accessibility. Although the human KMT2 family was initially named the mixed-lineage leukaemia (MLL) family, owing to the role of the first-found member KMT2A in this disease, recent exome-sequencing studies revealed KMT2 genes to be among the most frequently mutated genes in many types of human cancers. Efforts to integrate the molecular mechanisms of KMT2 with its roles in tumorigenesis have led to the development of first-generation inhibitors of KMT2 function, which could become novel cancer therapies.
Collapse
Affiliation(s)
- Rajesh C. Rao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
- Correspondence: , Tel: (734) 6151315, Fax: (734) 7636476
| |
Collapse
|
32
|
Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol Cell 2015; 107:111-29. [PMID: 25631473 DOI: 10.1111/boc.201400096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The advent of widespread cancer genome sequencing has accelerated our understanding of the molecular aberrations underlying malignant disease at an unprecedented rate. Coupling the large number of bioinformatic methods developed to locate genomic breakpoints with increased sequence read length and a deeper understanding of coding region function has enabled rapid identification of novel actionable oncogenic fusion genes. Using examples of kinase fusions found in liquid and solid tumours, this review highlights major concepts that have arisen in our understanding of cancer pathogenesis through the study of fusion proteins. We provide an overview of recently developed methods to identify potential fusion proteins from next-generation sequencing data, describe the validation of their oncogenic potential and discuss the role of targetted therapies in treating cancers driven by fusion oncoproteins.
Collapse
Affiliation(s)
- Monika A Davare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, U.S.A; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, U.S.A
| | | |
Collapse
|
33
|
Sagawa M, Tabayashi T, Kimura Y, Tomikawa T, Nemoto-Anan T, Watanabe R, Tokuhira M, Ri M, Hashimoto Y, Iida S, Kizaki M. TM-233, a novel analog of 1'-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK/STAT and proteasome activities. Cancer Sci 2015; 106:438-46. [PMID: 25613668 PMCID: PMC4409888 DOI: 10.1111/cas.12616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022] Open
Abstract
Although the introduction of bortezomib and immunomodulatory drugs has led to improved outcomes in patients with multiple myeloma, the disease remains incurable. In an effort to identify more potent and well-tolerated agents for myeloma, we have previously reported that 1'-acetoxychavicol acetate (ACA), a natural condiment from South-East Asia, induces apoptotic cell death of myeloma cells in vitro and in vivo through inhibition of NF-κB-related functions. Searching for more potent NF-κB inhibitors, we developed several ACA analogs based on quantitative structure-activity relationship analysis. TM-233, one of these ACA analogs, inhibited cellular proliferation and induced cell death in various myeloma cell lines with a lower IC50 than ACA. Treatment with TM-233 inhibited constitutive activation of JAK2 and STAT3, and then downregulated the expression of anti-apoptotic Mcl-1 protein, but not Bcl-2 and Bcl-xL proteins. In addition, TM-233 rapidly decreased the nuclear expression of NF-κB and also decreased the accumulation of cytosolic NF-κB. We also examined the effects of TM-233 on bortezomib-resistant myeloma cells that we recently established, KMS-11/BTZ and OPM-2/BTZ. TM-233, but not bortezomib, inhibited cellular proliferation and induced cell death in KMS-11/BTZ and OPM-2/BTZ cells. Interestingly, the combination of TM-233 and bortezomib significantly induced cell death in these bortezomib-resistant myeloma cells through inhibition of NF-κB activity. These results indicate that TM-233 could overcome bortezomib resistance in myeloma cells mediated through different mechanisms, possibly inhibiting the JAK/STAT pathway. In conclusion, TM-233 might be a more potent NF-κB inhibitor than ACA, and could overcome bortezomib resistance in myeloma cells.
Collapse
Affiliation(s)
- Morihiko Sagawa
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ballabio E, Milne TA. Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins. Mol Cell Oncol 2014; 1:e955330. [PMID: 27308325 PMCID: PMC4905190 DOI: 10.1080/23723548.2014.955330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers.
Collapse
Affiliation(s)
- Erica Ballabio
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| | - Thomas A Milne
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| |
Collapse
|
35
|
Abstract
It is unclear whether the antiproliferative/proapoptotic activity of oncogenes can be pharmacologically reactivated in cancer cells. In this issue of Cancer Cell, Liu and colleagues report that a proteasome inhibitor reactivates an MLL-AF4 controlled antitumor program to kill leukemia cells in an oncogene dose- and cell type-dependent manner.
Collapse
Affiliation(s)
- Smita Matkar
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|