1
|
Prusty P, Jeganmohan M. Co(III)-Catalyzed Three-Component Assembling of 2-Pyridones with Dienes and Formaldehyde via C-H Bond Activation. Org Lett 2025; 27:3210-3216. [PMID: 40125693 DOI: 10.1021/acs.orglett.5c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Here, we have demonstrated a Co(III)-catalyzed C-H functionalization of substituted pyridones with dienes and para-formaldehyde via a three-component sequential reaction. A library of homoallylic alcohols is synthesized with high regio- and chemoselectivity. The reaction scope is widely compatible with various substituted N-pyridyl-2-pyridones, butadiene, and substituted dienes. Interestingly, N-pyridyl-4-pyridone also participated in the reaction. The synthesized product was further converted into dihydrofuran-derived N-pyridyl-2-pyridone derivatives. A convincing mechanism and mechanistic investigations are described to justify the current methodology.
Collapse
Affiliation(s)
- Priyambada Prusty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
2
|
Li JW, Shi S, Huang MG, Chen XH, Qiao LY, Liu YJ. Salicylaldehyde-Enabled Co(II)-Catalyzed Oxidative C-H Alkenylation of Indoles with Olefins. J Org Chem 2025; 90:35-43. [PMID: 39726356 DOI: 10.1021/acs.joc.4c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A ligand-promoted oxidative dehydrogenation C-H alkenylation of indoles and olefins was achieved using commercial and low-cost Co(NO3)2·6H2O as a catalyst and Mn(OAc)2 as an oxidant. The design and selection of electrically unique methyl-substituted salicylaldehyde as a ligand is the key to achieve this transformation. This protocol can introduce an indole backbone into diverse bioactive molecules such as ibuprofen, naproxen, and Estrol for late-stage synthetic modification, which has potential applications in the discovery of drug molecules containing an indole motif.
Collapse
Affiliation(s)
- Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application. School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Lu-Yuan Qiao
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application. School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
3
|
Das A, Kumaran S, Ravi Sankar HS, Premkumar JR, Sundararaju B. A Dual Cobalt-Photoredox Catalytic Approach for Asymmetric Dearomatization of Indoles with Aryl Amides via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202406195. [PMID: 38896502 DOI: 10.1002/anie.202406195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
In this study, we unveil a novel method for the asymmetric dearomatization of indoles under cobalt/photoredox catalysis. By strategically activating C-H bonds of amides and subsequent migratory insertion of π-bonds present in indole as reactive partner, we achieve syn-selective tetrahydro-5H-indolo[2,3-c]isoquinolin-5-one derivatives with excellent yields and enantiomeric excesses of up to >99 %. The developed method operates without a metal oxidant, relying solely on oxygen as the oxidant and employing an organic dye as a photocatalyst under irradiation. Control experiments and stoichiometric studies elucidate the reversible nature of the enantiodetermining C-H activation step, albeit not being rate-determining. This study not only expands the horizon of cobalt-catalyzed asymmetric C-H bond functionalization, but also showcases the potential synergy between cobalt and photoredox catalysis in enabling asymmetric synthesis of complex molecules.
Collapse
Affiliation(s)
- Abir Das
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | - Subramani Kumaran
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | | | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Basker Sundararaju
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| |
Collapse
|
4
|
Mandal S, Barman M, Debnath B, Punniyamurthy T. Dual C(sp 3)-H and C(sp 2)-H Activation of 8-Methylquinoline N-Oxides: A Route to Access C7-H Bond. Org Lett 2024; 26:7560-7564. [PMID: 39230580 DOI: 10.1021/acs.orglett.4c02584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A Pd(II)-catalyzed regioselective dual C(sp3)-H/C7(sp2)-H activation and annulation of 8-methylquinoline N-oxides with maleimide has been accomplished. The use of N-oxide as a weak directing group under Pd(II)-complex catalysis activates the initial C(sp3)-H and triggers a relayed, second C7(sp2)-H activation. The dual C-H bond activation, [3 + 2]-annulation, facile introduction and removal of the directing group, substrate scope, and functional group diversity are the important practical features.
Collapse
Affiliation(s)
- Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Madhab Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | |
Collapse
|
5
|
Li T, Zhang Y, Du C, Yang D, Song MP, Niu JL. Simultaneous construction of inherent and axial chirality by cobalt-catalyzed enantioselective C-H activation of calix[4]arenes. Nat Commun 2024; 15:7673. [PMID: 39242562 PMCID: PMC11379863 DOI: 10.1038/s41467-024-52133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The simultaneous construction of multiple stereogenic elements in a single step is highly appealing and desirable in the field of asymmetric synthesis. Furthermore, the catalytic enantioselective synthesis of inherently chiral calix[n]arenes with high enantiopurity has long been a challenging endeavor. Herein, we report an enantioselective cobalt-catalyzed C-H activation/annulation for the efficient construction of inherently chiral calix[4]arenes bearing multiple C-N axially chiral element. By employing the benzamide tethered calix[4]arene as the substrate, the C-H annulation with alkynes can be successfully accomplished, leading to the generation of multiple stereogenic elements. A wide range of calix[4]arenes and alkynes are found to be well compatible, and exhibit good yields, high enantioselectivity and excellent diastereoselectivity. Notably, the gram-scale reaction, catalytic application, synthetic transformations, and chiral recognition further showcase the potential applications of this protocol.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Cong Du
- School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, China
| | - Dandan Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Mondal P, Mandal N, Pal AK, Datta A. Computational Insights into Palladium-Catalyzed Site-Selective Anilide and Benzamide-Type [3+2] Annulation via Double C-H Bond Activation. J Org Chem 2024; 89:11371-11379. [PMID: 39072638 DOI: 10.1021/acs.joc.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mechanism of palladium-catalyzed annulation reactions of benzamide- and anilide-type aromatic systems with maleimides is investigated using density functional theory. Double C-H bond activation is key to forming the desired annulation product. The first C-H bond activation for anilide- and amide-type ligands can occur at the ortho and benzylic C-H bonds, while the second C-H activation occurs at the meta carbon of the aromatic rings. For the anilide-type system, ortho and benzylic C-H bond activations occur via four- and five-membered palladacycles, respectively. In contrast, for the benzamide-type system, ortho and benzylic C-H bond activations occur via five- and six-membered palladacycles, respectively. The energy span model suggests that the initial C-H bond activation step at the benzylic position determines the turnover frequency for both anilide- and benzamide-type systems. Energy decomposition analysis and distortion-interaction/activation-strain analyses are employed to understand the electronic and steric factors controlling the turnover frequency-determining transition state.
Collapse
Affiliation(s)
- Partha Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| |
Collapse
|
7
|
Chen XH, Xu YQ, Huang MG, Dong ZB, Li JW, Liu YJ. Cobalt/Salicylaldehyde-Enabled C-H Alkoxylation of Benzamides with Secondary Alcohols under Solvothermal Conditions. J Org Chem 2024; 89:9011-9018. [PMID: 38847456 DOI: 10.1021/acs.joc.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
C-O bond formation via C-H alkoxylation remains a challenge, especially coupling with a secondary alcohol, due to its low activity and sterically encumbered property. Here, we report a general and effective cobalt-catalyzed oxidative cross-coupling of benzamides with secondary alcohols via C-H alkoxylation reaction under solvothermal conditions, enabled by a salicylaldehyde/cobalt complex. The protocol features easy operation without additives, broad substrate scope, and excellent functional tolerance. The applicability is proven by the gram-scale synthesis and modification of natural products.
Collapse
Affiliation(s)
- Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yi-Qing Xu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhi-Bing Dong
- School of Chemistry Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
8
|
Zhang J, Liu C, Wu J, Tan X, Wu W, Jiang H. Palladium-Catalyzed Annulation of Tertiary Anilines with 3-Butenoic Acid via Dual C-H Bond Activation. Org Lett 2024; 26:4422-4426. [PMID: 38767940 DOI: 10.1021/acs.orglett.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Catalytic cyclization via dual C-H bond activation has evolved as a powerful strategy for building bi- and polycyclic molecules. Herein, a palladium-catalyzed annulation of tertiary anilines with 3-butenoic acid via N-α-C(sp3)-H and ortho-C(sp2)-H activation is described. The remarkable characteristics of this reaction include excellent diastereoselectivity, broad substrate scope, and good tolerance for some highly sensitive groups. In addition, the KIE experiment suggested that the C-H bond abscission is not the turnover-limiting step.
Collapse
Affiliation(s)
- Jinhui Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Das A, Mandal R, Ravi Sankar HS, Kumaran S, Premkumar JR, Borah D, Sundararaju B. Reversal of Regioselectivity in Asymmetric C-H Bond Annulation with Bromoalkynes under Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315005. [PMID: 38095350 DOI: 10.1002/anie.202315005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 12/30/2023]
Abstract
Metal-catalyzed asymmetric C-H bond annulation strategy offers a versatile platform, allowing the construction of complex P-chiral molecules through atom- and step-economical fashion. However, regioselective insertion of π-coupling partner between M-C bond with high enantio-induction remain elusive. Using commercially available Co(II) salt and chiral-Salox ligands, we demonstrate an unusual protocol for the regio-reversal, enantioselective C-H bond annulation of phosphinamide with bromoalkyne through desymmetrization. The reaction proceeds through ligand-assisted enantiodetermining cyclocobaltation followed by regioselective insertion of bromoalkyne between Co-C, subsequent reductive elimination, and halogen exchange with carboxylate resulted in P-stereogenic compounds in excellent ee (up to >99 %). The isolation of cobaltacycle involved in the catalytic cycle and the outcome of control experiments provide support for a plausible mechanism.
Collapse
Affiliation(s)
- Abir Das
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | | | - Subramani Kumaran
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, 620017, Tiruchirappalli, Tamil Nadu, India
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, Maharashtra, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| |
Collapse
|
10
|
Li G, Shang Z, Li R, Xu X. DFT Study on the Mechanism of the Palladium-Catalyzed [3 + 2] Annulation of Aromatic Amides with Maleimides via Benzylic and meta-C-H Bond Activation: Role of the External Ligand Ac-Gly-OH. J Org Chem 2023. [PMID: 38153982 DOI: 10.1021/acs.joc.3c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The mechanism of the Ac-Gly-OH-assisted palladium-catalyzed [3 + 2] annulation of aromatic amides with maleimides is investigated using density functional theory calculations. The results show that the reaction undergoes the sequential steps of N-H bond deprotonation, first benzylic C-H bond activation, maleimide insertion, second meta-C-H bond activation, reductive elimination, and oxidation. The external ligand Ac-Gly-OH acts as the internal base for hydrogen abstraction in the first benzylic C-H bond activation. The maleimide insertion step is found to be the rate-determining step. Based on the nearly same energetic span of the two pathways to generate the enantio products, the computational results are consistent with the experimental observation that the terminal [3 + 2] annulation products are racemic when using an achiral ligand. These calculation results disclose the detailed reaction mechanism and shed light on some experimental ambiguities.
Collapse
Affiliation(s)
- Guorong Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenfeng Shang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ruifang Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
12
|
Binnani C, Arora S, Priya B, Gupta P, Singh SK. 2-Hydroxypyridine-based Ligands as Promoter in Ruthenium(II) Catalyzed C-H Bond Activation/Arylation Reactions. Chem Asian J 2023; 18:e202300569. [PMID: 37811781 DOI: 10.1002/asia.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
A class of 2-hydroxypyridine based ligands are explored to achieve enhanced catalytic activity for ortho-C-H bond activation/arylation reaction over [(η6 -p-cymene)RuCl2 ]2 catalyst in water. Extensive studies using a series of substituted 2-hydroxypyridine based ligands (L1-L6) inferred that 5-trifluoromethyl-2-hydroxypyridine (L6) exhibited favorable effects to enhance the catalytic activity of Ru(II) catalyst for ortho C-H bond arylation of 2-phenylpyridine by 8 folds compared to those performed without ligands. The (η6 -p-cymene)Ru - L6 system also exhibited enhanced catalytic activity for ortho C-H bond arylation of 2-phenylpyridine using a variety of aryl halides. NMR and mass investigations inferred the presence of several ligand coordinated Ru(II) species, suggesting the involvement of these species in C-H bond activation reaction. Further in concurrence with the experimental findings, the density functional theory (DFT) calculations also evidenced the prominent role of 2-hydroxypyridine based ligands in Ru(II) catalyzed C-H bond arylation of 2-phenylpyridine with lower energy barrier for the C-H activation step.
Collapse
Affiliation(s)
- Chinky Binnani
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - Sumangla Arora
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Bhanu Priya
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanjay K Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| |
Collapse
|
13
|
Chatani N. Nickel-Catalyzed Functionalization Reactions Involving C-H Bond Activation via an Amidate-Promoted Strategy and Its Extension to the Activation of C-F, C-O, C-S, and C-CN Bonds. Acc Chem Res 2023; 56:3053-3064. [PMID: 37820051 DOI: 10.1021/acs.accounts.3c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
ConspectusThe development of functionalization reactions involving the activation of C-H bonds has evolved extensively due to the atom and step economy associated with such reactions. Among these reactions, chelation assistance has been shown to provide a powerful solution to the serious issues of reactivity and regioselectivity faced in the activation of C-H bonds. The vast majority of C-H functionalization reactions reported thus far has involved the use of precious metals. Kleiman and Dubeck reported the cyclonickelation of azobenzene and NiCp2 in which an azo group directs a Ni center to activate the ortho C-H bond in close proximity. Although this stoichiometric reaction was discovered earlier than that for other transition-metal complexes, its development as a catalytic reaction was delayed. No general catalytic systems were available for Ni-catalyzed C-H functionalization reactions for a long time. This Account details our group's development of Ni(0)- and Ni(II)-catalyzed chelation-assisted C-H functionalization reactions. It also highlights how the new strategy can be extended to the activation of other unreactive bonds.In the early 2010s, we found that the Ni(0)-catalyzed reaction of aromatic amides that contain a 2-pyridinylmethylamine moiety as a directing group with alkynes results in C-H/N-H oxidative annulation to give isoquinolinones. In addition, the combination of a Ni(II) catalyst and an 8-aminoquinoline directing group was found to be a superior combination for developing a wide variety of C-H functionalization reactions with various electrophiles. The reactions were proposed to include the formation of unstable Ni(IV) and/or Ni(III) species; the generation of such high-valence Ni species was rare at that time, but since then, many papers dealing with DFT and organometallic studies have appeared in the literature in attempts to understand the mechanism. Based on our in-depth considerations of the mechanism with respect to why an N,N-bidentate directing group is required, we realized that the formation of a N-Ni bond by the oxidative addition of a N-H bond to a Ni(0) species or a ligand exchange between a N-H bond and Ni(II) species is the key step. We concluded that the precoordination of the N(sp2) atom in the directing group positions the Ni species to be in close proximity to the N-H bond which permits the formation of a N-Ni bond. Based on this working hypothesis, we carried out the reaction using KOtBu as a base and found that the Ni(0)-catalyzed reaction of aromatic amides that do not contain such a specific directing group with alkynes results in the formation of the desired isoquinolinone, in which an amidate anion acts as the actual directing group. Remarkably, this strategy was found to be applicable to the activation of various other unreactive bonds such as C-F, C-O, C-S, and C-CN.
Collapse
Affiliation(s)
- Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, and Research Center for Environmental Preservation, Osaka University, 565-0871 Osaka Japan
| |
Collapse
|
14
|
Li T, Shi L, Wang X, Yang C, Yang D, Song MP, Niu JL. Cobalt-catalyzed atroposelective C-H activation/annulation to access N-N axially chiral frameworks. Nat Commun 2023; 14:5271. [PMID: 37644016 PMCID: PMC10465517 DOI: 10.1038/s41467-023-40978-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The N-N atropisomer, as an important and intriguing chiral system, was widely present in natural products, pharmaceutical lead compounds, and advanced material skeletons. The anisotropic structural characteristics caused by its special axial rotation have always been one of the challenges that chemists strive to overcome. Herein, we report an efficient method for the enantioselective synthesis of N-N axially chiral frameworks via a cobalt-catalyzed atroposelective C-H activation/annulation process. The reaction proceeds under mild conditions by using Co(OAc)2·4H2O as the catalyst with a chiral salicyl-oxazoline (Salox) ligand and O2 as an oxidant, affording a variety of N-N axially chiral products with high yields and enantioselectivities. This protocol provides an efficient approach for the facile construction of N-N atropisomers and further expands the range of of N-N axially chiral derivatives. Additionally, under the conditions of electrocatalysis, the desired N-N axially chiral products were also successfully achieved with good to excellent efficiencies and enantioselectivities.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chen Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|
15
|
Li T, Shi L, Zhao X, Wang J, Si XJ, Yang D, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Skeletons Construction via Cobalt-Catalyzed Atroposelective Annulation. Org Lett 2023. [PMID: 37428108 DOI: 10.1021/acs.orglett.3c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Herein, the atroposelective construction of five-six heterobiaryl skeleton-based C-N chiral axis has been successfully accomplished via a Co-catalyzed C-H bond activation and annulation process, in which the isonitrile was employed as the C1 source and the 8-aminoquinoline moiety served as both directing group and integral part of C-N atropisomers, respectively. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere, generating the target axial heterobiaryls with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives, and the obtained 3-iminoisoindolinone products with a five membered N-heterocycle exhibit high atropostability. Additionally, the C-N axially chiral monophosphine backbones derived from this protocol possess the potential to become an alternative ligand platform.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
16
|
Si XJ, Zhao X, Wang J, Wang X, Zhang Y, Yang D, Song MP, Niu JL. Cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes or alkynes: facile access to C-N axially chiral sultams. Chem Sci 2023; 14:7291-7303. [PMID: 37416705 PMCID: PMC10321536 DOI: 10.1039/d3sc01787g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Herein we report a cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes and alkynes, using either chemical or electrochemical oxidation. By using O2 as the oxidant, the annulation with allenes proceeds efficiently with a low catalyst/ligand loading of 5 mol% and tolerates a wide range of allenes, including 2,3-butadienoate, allenylphosphonate, and phenylallene, resulting in C-N axially chiral sultams with high enantio-, regio-, and position selectivities. The annulation with alkynes also exhibits excellent enantiocontrol (up to >99% ee) with a variety of functional aryl sulfonamides, and internal and terminal alkynes. Furthermore, electrochemical oxidative C-H/N-H annulation with alkynes is achieved in a simple undivided cell, demonstrating the versatility and robustness of the cobalt/Salox system. The gram-scale synthesis and asymmetric catalysis further highlight the practical utility of this method.
Collapse
Affiliation(s)
- Xiao-Ju Si
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Yuanshuo Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
17
|
Yang D, Zhang X, Wang X, Si XJ, Wang J, Wei D, Song MP, Niu JL. Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinghua Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
18
|
Yao QJ, Huang FR, Chen JH, Zhong MY, Shi BF. Enantio- and Regioselective Electrooxidative Cobalt-Catalyzed C-H/N-H Annulation with Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218533. [PMID: 36658097 DOI: 10.1002/anie.202218533] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
In recent years, the merging of electrosynthesis with 3d metal catalyzed C-H activation has emerged as a sustainable and powerful technique in organic synthesis. Despite the impressive advantages, the development of an enantioselective version remains elusive and poses a daunting challenge. Herein, we report the first electrooxidative cobalt-catalyzed enantio- and regioselective C-H/N-H annulation with olefins using an undivided cell at room temperature (up to 99 % ee). t Bu-Salox, a rationally designed Salox ligand bearing a bulky tert-butyl group at the ortho-position of phenol, was found to be crucial for this asymmetric annulation reaction. A strong cooperative effect between t Bu-Salox and 3,4,5-trichloropyridine enabled the highly enantio- and regioselective C-H annulation with the more challenging α-olefins without secondary bond interactions (up to 96 % ee and 97 : 3 rr). Cyclovoltametric studies, and the preparation, characterization, and transformation of cobaltacycle intermediates shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ming-Yu Zhong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
19
|
Dhillon P, Anaspure P, Wiklander JG, Kathiravan S, Nicholls IA. Diyne-steered switchable regioselectivity in cobalt(II)-catalysed C(sp 2)-H activation of amides with unsymmetrical 1,3-diynes. Org Biomol Chem 2023; 21:1942-1951. [PMID: 36753336 DOI: 10.1039/d2ob02193e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regiochemical outcome of a cobalt(II) catalysed C-H activation reaction of aminoquinoline benzamides with unsymmetrical 1,3-diynes under relatively mild reaction conditions can be steered through the choice of diyne. The choice of diyne provides access to either 3- or 4-hydroxyalkyl isoquinolinones, paving the way for the synthesis of more highly elaborate isoquinolines.
Collapse
Affiliation(s)
- Prakriti Dhillon
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Prasad Anaspure
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Jesper G Wiklander
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden.
| |
Collapse
|
20
|
Jothi Murugan S, Jeganmohan M. Cp*Co(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. J Org Chem 2023; 88:1578-1589. [PMID: 36680527 DOI: 10.1021/acs.joc.2c02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient and straightforward strategy for the synthesis of isoquinolones through [4 + 2]-annulation of N-chlorobenzamides with vinyl acetate in the presence of CoCp*(III) catalyst in a regioselective manner is described. Furthermore, the annulation reaction was diversified by using vinyl ketones. By utilizing this strategy, biologically valuable isoquinolone derivatives were prepared in good yields. Subsequently, isoquinolone derivatives were further transformed into 1-chloroisoquinolines in the presence of POCl3. Furthermore, mechanistic investigations such as deuterium labeling study and competition experiment were performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
21
|
Lu D, Chen S, Tang N, Yin SF, Kambe N, Qiu R. Copper-Catalyzed Cyclization of 2-Alkynylanilines to Give 2-Haloalkoxy-3-alkyl(aryl)quinolines. Org Lett 2023; 25:676-681. [PMID: 36682056 DOI: 10.1021/acs.orglett.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein we describe a method to produce 2-haloalkoxy-3-substituted quinolines via the cyclization of 2-alkynylanilines with TMSCF3 and THF. This synthetic method uses inexpensive and easy-to-handle TMSCF3 and employs a commercially available CuI catalyst to transform a broad range of 2-alkynylanilines into versatile 2-difluoromethoxy-3-substituted quinolines and 2-iodoalkoxy-3-substituted quinolines with excellent chemoselectivity.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Songhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
22
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
23
|
Gong X, Yu N, Gu L, Li Z, Ma W, Zhao F. Redox-neutral rhodium(III)-catalyzed divergent synthesis of tetrasubstituted 1,3-enynes and alkynylated benzofurans. Org Biomol Chem 2022; 21:147-152. [PMID: 36465010 DOI: 10.1039/d2ob01800d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the assistance of the acetamido directing group (DG), a rhodium-catalyzed C-H alkenylation/DG migration cascade for the synthesis of tetrasubstituted 1,3-enynes from N-phenoxyacetamides and 1,3-diynes has been achieved in this work. Alternatively, a rhodium-catalyzed [3 + 2] annulation for the synthesis of alkynylated benzofurans from the same set of substrates has also been achieved by simply changing the reaction conditions. This work highlights the tunable divergent synthesis of valuable compounds triggered by C-H activation.
Collapse
Affiliation(s)
- Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Na Yu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
24
|
Yadav SK, Jeganmohan M. Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Substituted Alkenes. J Org Chem 2022; 87:13073-13088. [PMID: 36163013 DOI: 10.1021/acs.joc.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Co(III)-catalyzed redox-neutral [4 + 2] annulation of N-chlorobenzamides/acrylamides with substituted alkenes at ambient temperature is demonstrated. Using this protocol, pharmaceutically important 3,4-dihydroisoquinolinone derivatives were synthesized in good yields. Intriguingly, the synthetically useful functional group of allylic coupling partners such as sulfonyl, carbonate, acetate, phosphate, amide, nitrile, and silane were retained in the final cyclized product. The present annulation reaction was compatible with various substituted benzamides and allylic coupling partners. To support the proposed reaction mechanism, competition experiments, deuterium labeling studies, and kinetic isotope effect studies were performed.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
25
|
Mou Q, Zhao R, Sun B. Recent Advances in Transition-Metal-Catalyzed C-H Functionalization of Ferrocene Amides. Chem Asian J 2022; 17:e202200818. [PMID: 36047433 DOI: 10.1002/asia.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Indexed: 11/11/2022]
Abstract
During the past decades, in synthetic organic chemistry, directing-group-assisted C-H functionalization is found to be a key tool for the expedient and site-selective construction of C-C and hybrid bonds. Among C-H functionalization of ferrocene derivatives, the directed group strategy is undoubtedly the most commonly used method. Compared to the other directing groups, ferrocene amides can be synthesized easily and are now recognized as one of the most efficient devices for the selective functionalization of certain positions because its metal centre permits fine, tuneable and reversible coordination. The family of amide directing groups mainly comprises monodentate and bidentate directing groups, which are categorized on the basis of coordination sites. In this review, various C-H bond functionalization reactions of ferrocene using amide directing groups are broadly discussed.
Collapse
Affiliation(s)
- Qi Mou
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Ruyuan Zhao
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Bo Sun
- Qingdao University of Science and Technology, college of chemical engineering, zhengzhoulu No. 53, 266000, Qingdao, CHINA
| |
Collapse
|
26
|
Lukasevics L, Cizikovs A, Grigorjeva L. Cobalt-catalyzed C(sp 2)-H bond imination of phenylalanine derivatives. Chem Commun (Camb) 2022; 58:9754-9757. [PMID: 35959660 DOI: 10.1039/d2cc02334b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the cobalt-catalyzed, picolinamide-directed C-H bond imination protocol of phenylalanine derivatives using isocyanides and a Co(dpm)2 catalyst. A wide range of functional groups were tolerated under the reaction conditions, yielding imines in high yields. The obtained imine products can easily be transformed to 1-aminoisoquinoline derivatives under reductive conditions, providing an attractive alternative to already existing methodologies. The control experiments indicated that C-H activation might occur via an electrophilic pathway.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia. .,Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Street 3, Riga, LV-1048, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.
| |
Collapse
|
27
|
Naskar G, Jeganmohan M. Ligand‐Enabled [3+2] Annulation of Aromatic Acids with Maleimides by C(sp
3
)−H and C(sp
2
)−H Bond Activation. Chemistry 2022; 28:e202200778. [DOI: 10.1002/chem.202200778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Gouranga Naskar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Masilamani Jeganmohan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| |
Collapse
|
28
|
|
29
|
El Idrissi N, Belachemi L, Merle N, Zinck P, Kaddami H. Comprehensive preparation and catalytic activities of co/TEMPO-cellulose nanocomposites: A promising green catalyst. Carbohydr Polym 2022; 295:119765. [DOI: 10.1016/j.carbpol.2022.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
|
30
|
Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Regio- and Chemoselective [4 + 2]-Annulation of N-Chlorobenzamides/Acrylamides with 1,3-Dienes at Room Temperature. J Org Chem 2022; 87:5713-5729. [PMID: 35414174 DOI: 10.1021/acs.joc.2c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Co(III)-catalyzed regio- and chemoselective redox-neutral C-H annulation of arylamides/acrylamides with 1,3-dienes is described. The present annulation reaction was well suited with a less-reactive 1,3-butadiene. By employing this protocol, pharmaceutically important 3,4-dihydroisoquinolinones were synthesized in good yields. Furthermore, the prepared 3,4-dihydroisoquinolinones were converted into highly important oxirane derivatives in good yields. A plausible mechanistic cycle is proposed and supported by a competition experiment and kinetic isotopic effect (KIE) studies.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
31
|
Liu M, Mao Z, Jiang Y, Zhang Z, Zhang X. Pd-catalyzed Site-selective direct arene C H arylation of Pyrrolo[2,3-d]pyrimidine derivatives with aryl iodides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Yadav SK, Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Chemo- and Regioselective [4 + 2]-Annulation of Aromatic Sulfoxonium Ylides with 1,3-Diynes. J Org Chem 2022; 87:4134-4153. [PMID: 35245072 DOI: 10.1021/acs.joc.1c02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Air-stable, highly abundant, and cost-effective Co(III)-catalyzed redox-neutral [4 + 2]-annulation of aromatic sulfoxonium ylides with 1,3-diynes providing useful substituted 1-naphthol derivatives in a regioselective manner is described. Further, the prepared 1-naphthols having internal alkyne were converted into useful polycarbocyclic molecules and spiro-dienone derivatives in good-to-excellent yields. A possible reaction mechanism involving ortho C-H activation as a key step was proposed and supported by deuterium labeling and kinetic isotope labeling studies.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
33
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Sajjad MA, Schwerdtfeger P, Cai Y, Waters JM, Harrison JA, Nielson AJ. Bis‐anagostic structures in N,N’‐chelate ligand complexes of palladium(II). Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Peter Schwerdtfeger
- Massey University - Albany Campus: Massey University - Auckland Campus Chemistry NEW ZEALAND
| | - Yicao Cai
- Massey University - Albany Campus: Massey University - Auckland Campus Chemistry NEW ZEALAND
| | - Joyce M. Waters
- Massey University - Albany Campus: Massey University - Auckland Campus Chemistry NEW ZEALAND
| | - John A. Harrison
- Massey University - Albany Campus: Massey University - Auckland Campus Chemistry NEW ZEALAND
| | - Alastair James Nielson
- Massey University at Albany Chemistry. INS Albany CampusPrivate bag 102 904 NSMC Private Bag 102 904 Auckland NEW ZEALAND
| |
Collapse
|
35
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
37
|
Zhang H, Sun MC, Yang D, Li T, Song MP, Niu JL. Cobalt(II)-Catalyzed Activation of C(sp3)–H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng-Chan Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Tong Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
38
|
Tomar R, Bhattacharya D, Arulananda Babu S. Direct lactamization of β‐arylated δ‐aminopentanoic acid carboxamides: En route to 4‐aryl‐ 2‐piperidones, piperidines, antituberculosis molecule Q203 (Telacebec) and its analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
39
|
Borthakur I, Sau A, Kundu S. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Ouyang W, Liu B, He Y, Wen Y, Gao Y, Huo Y, Chen Q, Li X. Modular construction of functionalized anilines via switchable C–H and N-alkylations of traceless N-nitroso anilines with olefins. Org Chem Front 2022. [DOI: 10.1039/d2qo00389a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Switchable C–H or N-alkylations of N-nitroso anilines with olefins.
Collapse
Affiliation(s)
- Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bairong Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanmei Wen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
41
|
Zhang H, Yang D, Zhao XF, Niu JL, Song MP. Cobalt-catalyzed C(sp3)-H bond functionalization to access indole derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we develop an efficient method of cobalt-catalyzed C(sp3)-H bond functionalization to synthesize indole derivatives. The highlight of this protocol is accomplished by the sequential C-H activation. This “cobalt/ organic...
Collapse
|
42
|
Bera A, Kabadwal LM, Bera S, Banerjee D. Recent advances on non-precious metal-catalyzed C-H functionalization of N-heteroarenes. Chem Commun (Camb) 2021; 58:10-28. [PMID: 34874036 DOI: 10.1039/d1cc05899a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-Heteroarenes are widely used for numerous medicinal applications, lifesaving drugs and show utmost importance as intermediates in chemical synthesis. This feature article highlights the recent advances, from 2015 to August 2021, on sp2 and sp3 C-H bond functionalization reactions of various N-heteroarenes catalyzed by non-precious transition metals (Mn, Co, Fe, Ni, etc.). The salient features of the report are: (i) the development of newer catalysis for Csp2-H activation of N-heteroarenes and categorized into alkylation, alkenylation, borylation, cyanation, and annulation reactions, (ii) recent advances on Csp3-H bond functionalization of N-heteroarenes considering newer approaches for alkylation as well as alkenylation processes, and (iii) synthetic applications and practical utility of the catalytic protocols utilized for late-stage drug development; (iv) scope for the development of newer catalytic protocols along with mechanistic studies and detail mechanistic findings of various important processes.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
43
|
Chakraborty P, Mandal R, Paira S, Sundararaju B. C-H bond functionalization by dual catalysis: merging of high-valent cobalt and photoredox catalysis. Chem Commun (Camb) 2021; 57:13075-13083. [PMID: 34779804 DOI: 10.1039/d1cc04872d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merger of transition metal catalysis and photocatalysis has emerged as a versatile platform that opened the gateway to diverse low-energy pathways for several synthetic transformations. However, amidst the first-row transition metals, directed C-H bond functionalization mediated by high-valent cobalt catalysis has advanced with rising momentum owing to its unique reactivity and the ability to participate in both one- and two-electron transfer reactions. However, the use of expensive, privileged Cp* ligands or use of stoichiometric silver(I) or manganese(III) is unavoidable. Despite significant advances in their respective fields, the combination of these two "green" approaches to further the vested interest of the scientific research community towards the development of ecofriendly and sustainable protocols is noticeably limited. Thus, the methodology based on high-cobalt-photoredox dual-catalytic strategy has high dormant potential and is worthy to explore. Herein, we highlight the recent advances in the high-valent cobalt-catalyzed sustainable catalytic approach by harnessing light energy for oxidative C-H bond functionalization. With this, we hope to inspire the development of unexplored cobalt-photoredox-catalyzed reactions with improved efficiency and selectivity.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Soumen Paira
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
44
|
Strekalova S, Kononov A, Rizvanov I, Budnikova Y. Acetonitrile and benzonitrile as versatile amino sources in copper-catalyzed mild electrochemical C-H amidation reactions. RSC Adv 2021; 11:37540-37543. [PMID: 35496383 PMCID: PMC9043791 DOI: 10.1039/d1ra07650g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 02/01/2023] Open
Abstract
A mild, efficient electrochemical approach to the site-selective direct C–H amidation of benzene and its derivatives with acetonitrile and benzonitrile has been developed. It has been shown that joint electrochemical oxidation of various arenes in the presence of a copper salt as a catalyst and nitriles leads to the formation of N-phenylacetamide from benzene and N-benzylacetamides from benzyl derivatives (up to 78% yield). A favorable feature of the process is mild conditions (room temperature, ambient pressure, no strong oxidants) that meet the criteria of green chemistry. Different pathways of C–H transformation depending on the substrate nature and oxidation potential.![]()
Collapse
Affiliation(s)
- Sofia Strekalova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Kazan 420088 Russian Federation
| | - Alexander Kononov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Kazan 420088 Russian Federation .,Kazan National Research Technological University Kazan 420015 Russian Federation
| | - Ildar Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Kazan 420088 Russian Federation
| | - Yulia Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Kazan 420088 Russian Federation .,Kazan National Research Technological University Kazan 420015 Russian Federation
| |
Collapse
|
45
|
Mandal R, Barsu N, Garai B, Das A, Perekalin D, Sundararaju B. Room-temperature C-H bond alkynylation by merging cobalt and photocatalysts. Chem Commun (Camb) 2021; 57:12167-12170. [PMID: 34726212 DOI: 10.1039/d1cc05263b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new protocol is developed for the mono- and bis-ortho-C-H alkynylation of easily accessible benzamide derivatives using alkynyl bromides at room temperature by merging cobalt and photocatalysts. The diverse reactivity of various alkynyl bromides towards the C-H alkynylation and competing C-H/N-H bond annulation reactions has been demonstrated to give the corresponding products in good yields with excellent functional group tolerance.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Nagaraju Barsu
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Bholanath Garai
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Abir Das
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Dmitry Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Basker Sundararaju
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
46
|
Zhao F, Zhou Z, Lu Y, Qiao J, Zhang X, Gong X, Liu S, Lin S, Wu X, Yi W. Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5 H)-ones Enabled by Rh(III)-Catalyzed Domino C–H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shuang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
47
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
48
|
Yuan WK, Shi BF. Synthesis of Chiral Spirolactams via Sequential C-H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021; 60:23187-23192. [PMID: 34435722 DOI: 10.1002/anie.202108853] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Indexed: 12/25/2022]
Abstract
An unprecedented enantioselective synthesis of spiro-γ-lactams via a sequential C-H olefination/asymmetric [4+1] spirocyclization under a simple CoII /chiral spiro phosphoric acid (SPA) binary system is reported. A range of biologically important spiro-γ-lactams are obtained with high levels of enantioselectivity (up to 98 % ee). The concise, asymmetric synthesis of an aldose reductase inhibitor was successfully achieved. Notably, contrast to previous reports that relied on the use of cyclopentadienyl or its derivatives (achiral Cp*, CptBu , or chiral Cpx ) ligated CoIII complexes requiring tedious steps to prepare, cheap and commercially available cobalt(II) acetate tetrahydrate was used as an efficient precatalyst.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
49
|
Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Functionalization of C(sp3)-H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Yuan W, Shi B. Synthesis of Chiral Spirolactams via Sequential C−H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co
II
/Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wen‐Kui Yuan
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|