1
|
Chang MY, Lin CY. One-pot synthesis of symmetrical bis-sulfonyl 2,6-diarylpyridines via BiCl 3-catalyzed and K 2S 2O 8-mediated domino annulation of β-ketosulfones and N, N-dimethylacetamide. Org Biomol Chem 2025; 23:844-853. [PMID: 39625690 DOI: 10.1039/d4ob01681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In this study, BiCl3-promoted and K2S2O8-mediated synthesis of diverse bis-sulfonyl 2,6-diarypyridines was developed via one-pot stepwise (2C + 2C + 1C + 1N) annulation of two molecules of β-ketosulfone and N,N-dimethylacetamide (DMAC). In the entire process, DMAC acts as the synthon of one carbon and one nitrogen in the construction of the pyridine skeleton via cascade formation of single (C-C/C-N) and double (CC/CN) bonds under refluxing DMAC conditions.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chun-Yi Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
2
|
Vu J, Haug GC, Li Y, Zhao B, Chang CJ, Paton RS, Dong Y. Enantioconvergent Cross-Nucleophile Coupling: Copper-Catalyzed Deborylative Cyanation. Angew Chem Int Ed Engl 2024; 63:e202408745. [PMID: 39264815 DOI: 10.1002/anie.202408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations. Specifically, this work describes the development and mechanistic study of an enantioconvergent deborylative cyanation enabled by Cu catalysis. This method imparts a high degree of enantioselectivity and tolerates a wide range of common functional groups and heterocycles. The reaction is proposed to proceed through a radical-relay mechanism. Aniline-assisted homolysis of the carbon-boron bond results in prochiral alkyl radicals that are functionalized by in situ generated Cu(II)(CN)2 species in an enantioselective fashion. The Cu(II)(CN)2 intermediate was characterized by electron paramagnetic resonance (EPR) spectroscopy, and its electronic structure was probed using density functional theory (DFT) calculations. Computational studies were carried out to corroborate the proposed radical-relay mechanism.
Collapse
Affiliation(s)
- Jonathan Vu
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Graham C Haug
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yongxian Li
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Biyu Zhao
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Christopher J Chang
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yuyang Dong
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| |
Collapse
|
3
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Zhang J, Mao L, Liu C, Tan X, Wu J, Wei X, Wu W, Jiang H. Palladium-catalyzed 1,1-aminoxylation of 3-butenoic acid with 2-alkynylanilines. Chem Commun (Camb) 2024; 60:9404-9407. [PMID: 39135493 DOI: 10.1039/d4cc03099k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Herein, a palladium-catalyzed 1,1-aminoxylation of 3-butenoic acid and 2-alkynylanilines has been developed, achieving the installation of two distinct heteroatom motifs across an olefin skeleton. The strategy features a high step and atom economy and good functional group tolerance, which outlines an efficient approach for simultaneously building up γ-butylactone and indole skeletons. Notably, an external ligand, 2,9-dimethyl-1,10-phenanthroline, has been used to succeed in this protocol to effectively suppress the production of indole byproducts.
Collapse
Affiliation(s)
- Jinhui Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lihua Mao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chao Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xuefeng Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Zhang X, Su W, Guo H, Fang P, Yang K, Song Q. N-Heterocycle-Editing to Access Fused-BN-Heterocycles via Ring-Opening/C-H Borylation/Reductive C-B Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202318613. [PMID: 38196396 DOI: 10.1002/anie.202318613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Skeletal editing of N-heterocycles has recently received considerable attention, and the introduction of boron atom into heterocycles often results in positive property changes. However, direct enlargement of N-heterocycles through boron atom insertion is rarely reported in the literature. Here, we report a N-heterocyclic editing reaction through the combination boron atom insertion and C-H borylation, accessing the fused-BN-heterocycles. The synthetic potential of this chemistry was demonstrated by substrate scope and late-stage diversification of products.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wanlan Su
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Pengyuan Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Feng YL, Zhang BW, Xu Y, Jin S, Mazzarella D, Cao ZY. The reactivity of alkenyl boron reagents in catalytic reactions: recent advances and perspectives. Org Chem Front 2024; 11:7249-7277. [DOI: 10.1039/d4qo01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent advances focusing on novel reactivity of alkenyl boron reagents in polar or radical pathways within catalytic reactions by employing transition metal catalysis, organocatalysis have been summarized and discussed.
Collapse
Affiliation(s)
- Ya-Li Feng
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Bo-Wen Zhang
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
7
|
Nunes MP, Jawale DV, Delolo FG, Araujo MH, Gravel E, Doris E, da Silva Júnior EN. Solvent-free hydroboration of alkenes and alkynes catalyzed by rhodium-ruthenium nanoparticles on carbon nanotubes. Chem Commun (Camb) 2023; 59:2763-2766. [PMID: 36786050 DOI: 10.1039/d2cc06864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A heterogeneous catalyst consisting of bimetallic rhodium-ruthenium particles immobilized on carbon nanotubes was used in the hydroboration reaction and proved highly effective for a variety of alkenes and alkynes. The reactions were carried out with low catalytic loadings (0.04 mol%), under solvent-free conditions, and at room temperature. In addition, to demonstrate its recyclability, the catalyst was recovered by a simple centrifugation process and reused over 5 consecutive cycles without losing any activity.
Collapse
Affiliation(s)
- Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Dhanaji V Jawale
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Fábio G Delolo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
8
|
Qiu CS, Qiu NP, Flinn C, Zhao Y. DFT mechanistic studies of boron-silicon exchange reactions between silyl-substituted arenes and boron bromides. Phys Chem Chem Phys 2023; 25:6714-6725. [PMID: 36805579 DOI: 10.1039/d2cp05615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
C-B bond forming reactions are important methodologies in modern synthetic chemistry, since many borylated organic substrates, ranging from alkanes and alkenes to arenes and heteroarenes, are useful intermediates for the synthesis of natural products, pharmaceuticals, and organic π-conjugated materials. Among numerous borylation methods, C-Si/B-Br exchange reactions have attracted increasing attention in recent years. While experimental exploration has been continually carried out for more than two decades, mechanistic insights into this type of reaction have not yet been clearly established. To address this deficiency of knowledge, we performed density functional theory (DFT) calculations to map out the reaction pathways for a range of boron-silicon exchange reactions between boron tribromide (BBr3) and trimethylsilyl-substituted arenes (TMSAr). Our computational analyses have disclosed the energetic, structural, and electronic properties for key stationary points on the potential energy surfaces (PES) in both the gas and solution (CH2Cl2) phases.
Collapse
Affiliation(s)
- Christopher S Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Nicholas P Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Christopher Flinn
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
9
|
New insight into Cu-catalyzed borocarbonylative coupling reactions of alkenes with alkyl halides. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
1,6-Conjugate addition of para-quinone methides using gem-diborylcarbanions: Practical access to gem-diborylalkanes bearing vicinal tertiary/quaternary stereocenters. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Yamakawa Y, Ikuta T, Hayashi H, Hashimoto K, Fujii R, Kawashima K, Mori S, Uchida T, Katsuki T. Iridium(III)-Catalyzed Asymmetric Site-Selective Carbene C-H Insertion during Late-Stage Transformation. J Org Chem 2022; 87:6769-6780. [PMID: 35504014 DOI: 10.1021/acs.joc.2c00470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-H functionalization has recently received considerable attention because C-H functionalization during the late-stage transformation is a strong and useful tool for the modification of the bioactive compounds and the creation of new active molecules. Although a carbene transfer reaction can directly convert a C-H bond to the desired C-C bond in a stereoselective manner, its application in late-stage material transformation is limited. Here, we observed that the iridium-salen complex 6 exhibited efficient catalysis in asymmetric carbene C-H insertion reactions. Under optimized conditions, benzylic, allylic, and propargylic C-H bonds were converted to desired C-C bonds in an excellent stereoselective manner. Excellent regioselectivity was demonstrated in the reaction using not only simple substrate but also natural products, bearing multiple reaction sites. Moreover, based on the mechanistic studies, the iridium-catalyzed unique C-H insertion reaction involved rate-determining asynchronous concerted processes.
Collapse
Affiliation(s)
- Yuki Yamakawa
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Ikuta
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Hayashi
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keigo Hashimoto
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoma Fujii
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
| | - Kyohei Kawashima
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
| | - Tatsuya Uchida
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsutomu Katsuki
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
13
|
Ma QQ, Li CJ, Liao WW. Selective synthesis of functionalized α,β-multi-substituted α-amino cyclopentanones via an α-iminol rearrangement enabled by Pd-catalyzed addition of arylboronic acids to nitriles. Org Chem Front 2022. [DOI: 10.1039/d2qo01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient approach to construct α, β-multi-substituted α-amino cyclopentanones is described through an α-iminol rearrangement enabled by Pd-catalyzed addition of arylboronic acids to nitriles.
Collapse
Affiliation(s)
- Qian-Qian Ma
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Cheng-Jing Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
14
|
Wang WZ, Shen HR, Liao J, Wen W, Guo QX. Chiral aldehyde induced tandem conjugated addition-lactamization reaction for constructing full-substituted pyroglutamic acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01923f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic asymmetric tandem reaction including a chiral aldehyde catalyzed conjugated addition and an intramolecular lactamization is reported in this work. Under the optimal reaction conditions, various full-substituted pyroglutamic acids...
Collapse
|
15
|
Li T, Cheng X, Qian P, Zhang L. Gold-catalysed asymmetric net addition of unactivated propargylic C-H bonds to tethered aldehydes. Nat Catal 2021; 4:164-171. [PMID: 34755042 PMCID: PMC8574197 DOI: 10.1038/s41929-020-00569-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The asymmetric one-step net addition of unactivated propargylic C-H bond to aldehyde leads to an atom-economic construction of versatile chiral propargylic alcohols but has not been realized previously. Here we show its implementation in an intramolecular manner under mild reaction conditions. Via cooperative gold catalysis enabled by a chiral bifunctional phosphine ligand, this chemistry achieves asymmetric catalytic deprotonation of propargylic C-H (pKa > 30) by a tertiary amine group (pKa ~ 10) of the ligand in the presence of much more acidic aldehydic α-hydrogens (pKa ~ 17). The reaction exhibits a broad scope and readily accommodates various functional groups. The 5-/6-membered ring fused homopropargylic alcohol products are formed with excellent enantiomeric excesses and high trans-selectivities with or without a preexisting substrate chiral center. DFT studies of the reaction support the conceived reaction mechanism and the calculated energetics corroborate the observed stereoselectivity and confirm an additional metal-ligand cooperation.
Collapse
Affiliation(s)
- Ting Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.,Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, College of Chemistry & Materials Engineering, Institute of New Materials& Industry Technology, Wenzhou University, Wenzhou 325000, China
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Pengcheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, College of Chemistry & Materials Engineering, Institute of New Materials& Industry Technology, Wenzhou University, Wenzhou 325000, China
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
16
|
Guo P, Zhan M. Iridium-Catalyzed Enantioconvergent Allylation of a Boron-Stabilized Organozinc Reagent. J Org Chem 2021; 86:9905-9913. [PMID: 34184905 DOI: 10.1021/acs.joc.1c01076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed enantioconvergent coupling of the versatile boron-stabilized organozinc reagent BpinCH2ZnI with a racemic branched allylic carbonate has been developed here, which differs from our previous work by using 1,1-bisborylmethane through the kinetic resolution process. The reaction has a broad substrate scope, and various chiral homoallylic organoboronic esters could be obtained in good yields with excellent enantioselectivities. The synthetic practicability of the products was demonstrated by their conversion to other useful families of compounds.
Collapse
Affiliation(s)
- Panchi Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R.China
| | - Miao Zhan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R.China
| |
Collapse
|
17
|
Yuan SY, Yan QQ, Wang D, Dan TT, He L, He CY, Chu WD, Liu QZ. Asymmetric Synthesis of 3-Methyleneindolines via Rhodium(I)-Catalyzed Alkynylative Cyclization of N-( o-Alkynylaryl)imines. Org Lett 2021; 23:4823-4827. [PMID: 34080868 DOI: 10.1021/acs.orglett.1c01518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric synthesis of 3-methyleneindolines from alkynyl imines has been developed via a rhodium-catalyzed tandem process: regioselective alkynylation of the internal alkynes and subsequent intramolecular addition to the imines. The reaction proceeded with unconventional chemoselectivity and provided 3-methyleneindolines with good yields (up to 82% yield) and high enantioselectivities (up to 97% ee). Moreover, this transformation also features mild reaction conditions, perfect atom economy, and a broad substrate scope.
Collapse
Affiliation(s)
- Shi-Yi Yuan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Qi-Qi Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Dan Wang
- Chengdu Institute of Product Quality Inspection Co., Ltd., Chengdu 610000,China
| | - Ting-Ting Dan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
18
|
Zhang S, Feng X, Bao M. Palladium-Catalyzed Three-Component Coupling Reaction via Benzylpalladium Intermediate. CHEM REC 2021; 21:3559-3572. [PMID: 34028180 DOI: 10.1002/tcr.202100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Transition-metal catalyzed multi-component reactions have captured the attention of researchers in organic synthesis and drug synthesis due to their advantages of simple operation, easy availability of raw materials and without separation of intermediates. Among the multi-component reactions, the three-component processes have been developed into effective organic procedures. This personal account reviews our and other group's studies on the development of three-component coupling reaction for the rapid construction of two new chemical bonds simultaneously via benzylpalladium intermediates. Catalyst-switched three-component reactions of benzyl halides, activated olefins, and allyltributylstannane were successfully conducted to produce the corresponding benzylallylation products. Activation and conversion of carbon monoxide and carbon dioxide via π-benzylpalladium intermediates provide access to a wide range of unsaturated ketones and esters with excellent functional group tolerance. Meanwhile, other methods to produce benzylpalladium intermediates, including Heck insertion of alkenes into arylpalladium complexes, the oxidative addition of benzyl carbonate to palladium complexes and palladium-carbene migratory insertion, were also highlighted.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
19
|
Xie YW, Zhao ZN, Lin ZW, Wang YH, Liu YQ, Huang YY. Asymmetric Petasis reaction for the synthesis of chiral α- and β-butadienyl amines. Chem Commun (Camb) 2021; 57:2364-2367. [PMID: 33533779 DOI: 10.1039/d0cc08241d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Petasis reaction using (1S,2R)-1-amino-2-indanol as the substrate and an activator to construct α- and β-butadienyl amines in optically pure forms was realized, which are otherwise difficult to prepare. The reactions feature a metal-free nature, broad substrate scope, complete regioselectivities (γ-selectivity of pinacol homoallenyl- and isoprenylboronates), and high to excellent chirality induction (up to >20 : 1 dr). The favored nucleophilic addition across the Si-face of the imine intermediate was explained using DFT calculations of the six-membered chair-like transition state.
Collapse
Affiliation(s)
- Yi-Wen Xie
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
20
|
Jang WJ, Woo J, Yun J. Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angew Chem Int Ed Engl 2021; 60:4614-4618. [PMID: 33225611 DOI: 10.1002/anie.202014425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/23/2022]
Abstract
We report the diastereo- and enantioselective conjugate addition of chiral secondary borylalkyl copper species derived from borylalkenes in situ to α,β-unsaturated diesters. In the presence of a chiral bisphosphine-ligated CuH catalyst, the conjugate addition provides a direct access to enantioenriched alkylboron compounds containing two contiguous carbon stereogenic centers in good yield with high diastereo- and enantioselectivity (up to >98:2 dr, >99:1 er) by assembling readily available starting alkenyl reagents in a single operation without using preformed organometallic reagents or chiral auxiliaries. The resulting products were used in various organic transformations. The utility of the synthetic approach was highlighted by the synthesis of (-)-phaseolinic acid.
Collapse
Affiliation(s)
- Won Jun Jang
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jeongkyu Woo
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
21
|
Jang WJ, Woo J, Yun J. Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Won Jun Jang
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jeongkyu Woo
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
22
|
Nicholson K, Dunne J, DaBell P, Garcia AB, Bage AD, Docherty JH, Hunt TA, Langer T, Thomas SP. A Boron–Oxygen Transborylation Strategy for a Catalytic Midland Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kieran Nicholson
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Joanne Dunne
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Peter DaBell
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Alexander Beaton Garcia
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Andrew D. Bage
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Jamie H. Docherty
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Thomas A. Hunt
- Medicinal Chemistry, Early Oncology, AstraZeneca, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Thomas Langer
- Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca, Silk Road, Macclesfield SK10 2NA, United Kingdom
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
23
|
Ji Y, Zhang M, Xing M, Cui H, Zhao Q, Zhang C. Transition Metal Catalyzed Enantioselective Borylative Cyclization Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| |
Collapse
|
24
|
Snead RF, Nekvinda J, Santos WL. Copper(ii)-catalyzed protoboration of allenes in aqueous media and open air. NEW J CHEM 2021. [DOI: 10.1039/d0nj02010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A copper(ii)-catalyzed internal protoboration of monosubstituted allenes efficiently occurs in water at room temperature and open air to generate 1,1-disubstituted vinyl boronic acid derivatives.
Collapse
Affiliation(s)
- Russell F. Snead
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
25
|
Abstract
This review describes the latest polymeric systems used as boron transporters for boron neutron capture therapy.
Collapse
Affiliation(s)
- Anaïs Pitto-Barry
- School of Chemistry and Biosciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
26
|
Guo X, Lin Z. Understanding the insertion reactions of CO 2, aldehyde and alkene into Cu–X (X = B, C, O) bonds. NEW J CHEM 2021. [DOI: 10.1039/d0nj06094a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relative preference of different unsaturated organic molecules (CO2, PhCHO and styrene) for insertion into different Cu–X (X = B, C, O) bonds has been systematically examined with the aid of DFT calculations.
Collapse
Affiliation(s)
- Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
27
|
Zhang XJ, Cheng YM, Zhao XW, Cao ZY, Xiao X, Xu Y. Catalytic asymmetric synthesis of monofluoroalkenes and gem-difluoroalkenes: advances and perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01630f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The latest achievements in the catalytic asymmetric synthesis of both monofluoro- and gem-difluoroalkenes are discussed.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Ya-Min Cheng
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Xiao-Wei Zhao
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ying Xu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
- Engineering Research Center for Water Environment and Health of Henan
| |
Collapse
|
28
|
Ye F, Ge Y, Spannenberg A, Neumann H, Beller M. The role of allyl ammonium salts in palladium-catalyzed cascade reactions towards the synthesis of spiro-fused heterocycles. Nat Commun 2020; 11:5383. [PMID: 33097719 PMCID: PMC7584656 DOI: 10.1038/s41467-020-19110-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
There is a continuous need for designing new and improved synthetic methods aiming at minimizing reaction steps while increasing molecular complexity. In this respect, catalytic, one-pot cascade methodologies constitute an ideal tool for the construction of complex molecules with high chemo-, regio-, and stereoselectivity. Herein, we describe two general and efficient cascade procedures for the synthesis of spiro-fused heterocylces. This transformation combines selective nucleophilic substitution (SN2′), palladium-catalyzed Heck and C–H activation reactions in a cascade manner. The use of allylic ammonium salts and specific Pd catalysts are key to the success of the transformations. The synthetic utility of these methodologies is showcased by the preparation of 48 spiro-fused dihydrobenzofuranes and indolines including a variety of fluorinated derivatives. Synthetic methods aiming at minimizing reaction steps while increasing molecular complexity are highly sought after by organic chemists. Here, the authors report two cascade procedures combining nucleophilic substitution, palladium-catalyzed Heck and C–H activation reactions for the synthesis of spiro-fused heterocycles.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, 311121, Hangzhou, PR China.,Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yao Ge
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.
| |
Collapse
|
29
|
Zhong RL, Sakaki S. Methane Borylation Catalyzed by Ru, Rh, and Ir Complexes in Comparison with Cyclohexane Borylation: Theoretical Understanding and Prediction. J Am Chem Soc 2020; 142:16732-16747. [PMID: 32894944 DOI: 10.1021/jacs.0c07239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methane borylation catalyzed by Cp*M(Bpin)n (M = Ru or Rh; HBpin = pinacolborane; n = 2 or 3) and (TMPhen)Ir(Bpin)3 (TMPhen = 3,4,7,8-tetramethyl-1,10-phenanthroline) was investigated by DFT in comparison with cyclohexane borylation. Because Ru-catalyzed borylation has not been theoretically investigated yet, its reaction mechanism was first elucidated; Cp*Ru(Bpin)3 1-Ru is an active species, and Cp*Ru(Bpin)3(H)(CH3) 4-Ru is a key intermediate. In 4-Ru, the Ru is understood to have an ambiguous oxidation state between +IV and +VI because it has a H··Bpin bonding interaction with a bond order of about 0.5. Methane borylation occurs through oxidative addition of methane C-H bond followed by reductive elimination of borylmethane in all of these catalysts. The catalytic activity for methane borylation increases following the order Cp*Ru(Bpin)3 < (TMPhen)Ir(Bpin)3 < Cp*Rh(Bpin)2. Cyclohexane borylation occurs in the same mechanism except for the presence of isomerization of a key intermediate. Chemoselectivity of methane over cyclohexane increases following the order Ir < Ru < Rh. In all of these catalysts, the rate-determining step (RDS) of cyclohexane borylation needs a larger ΔG°‡ than the RDS of methane borylation because the more bulky cyclohexyl group induces larger steric repulsion with the ligand than methyl. One reason for the worse chemoselectivity of the Ir catalyst is its less congested transition state of the reductive elimination of borylcyclohexane. Herein, use of a strongly electron-donating ligand consisting of pyridine and N-heterocyclic carbene with bulky substituents is computationally proposed as a good ligand for the Ir catalyst; actually, the Ir complex of this ligand is calculated to be more active and more chemoselective than Cp*Rh(Bpin)2 for methane borylation.
Collapse
Affiliation(s)
- Rong-Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Shigeyoshi Sakaki
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan
| |
Collapse
|
30
|
Wang C, Zhao W, Wu X, Qu J, Chen Y. Palladium‐Catalyzed Regioselective Domino Spirocyclization of Carbamoyl Chlorides with Alkynes and Benzynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
31
|
Zhang Y, Li B, Liu S. Pd‐Senphos Catalyzed
trans
‐Selective Cyanoboration of 1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry Boston College Chestnut Hill MA 02467-3860 USA
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467-3860 USA
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467-3860 USA
| |
Collapse
|
32
|
Zhang Y, Li B, Liu SY. Pd-Senphos Catalyzed trans-Selective Cyanoboration of 1,3-Enynes. Angew Chem Int Ed Engl 2020; 59:15928-15932. [PMID: 32511855 PMCID: PMC7491284 DOI: 10.1002/anie.202005882] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/25/2022]
Abstract
The first trans-selective cyanoboration reaction of an alkyne, specifically a 1,3-enyne, is described. The reported palladium-catalyzed cyanoboration of 1,3-enynes is site-, regio-, and diastereoselective, and is uniquely enabled by the 1,4-azaborine-based Senphos ligand structure. Tetra-substituted alkenyl nitriles are obtained providing useful boron-dienenitrile building blocks that can be further functionalized. The utility of our method has been demonstrated with the synthesis of Satigrel, an anti-platelet aggregating agent.
Collapse
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| |
Collapse
|
33
|
Zhang YL, Zhao ZN, Li WL, Li JJ, Kalita SJ, Schneider U, Huang YY. Catalytic asymmetric aldehyde prenylation and application in the total synthesis of (-)-rosiridol and (-)-bifurcadiol. Chem Commun (Camb) 2020; 56:10030-10033. [PMID: 32728678 DOI: 10.1039/d0cc00367k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral phosphoric acid-catalyzed asymmetric aldehyde prenylation has been established using an α,α-dimethyl allyl boronic ester. The transformation provides expedient access to a wide array of aryl, heteroaryl, aryl-substituted alkenyl and primary and secondary aliphatic homoprenyl alcohols with excellent asymmetric induction. The utility of this asymmetric catalysis strategy has been demonstrated through a short and efficient total synthesis of the two natural products (-)-rosiridol and (-)-bifurcadiol.
Collapse
Affiliation(s)
- Yu-Long Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Braire J, Dorcet V, Vidal J, Lalli C, Carreaux F. BINOL derivatives-catalysed enantioselective allylboration of isatins: application to the synthesis of (R)-chimonamidine. Org Biomol Chem 2020; 18:6042-6046. [PMID: 32729604 DOI: 10.1039/d0ob01386b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The asymmetric synthesis of the 3-allyl-3-hydroxyoxindole skeleton was accomplished in yields up to 99% via a metal-free and enantioselective allylation of isatins (90-96% ee) using BINOL derivatives as catalysts and an optimized allylboronate. This methodology was applied at a gram-scale to the synthesis of the natural product (R)-chimonamidine.
Collapse
Affiliation(s)
- Julien Braire
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Joëlle Vidal
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Claudia Lalli
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | | |
Collapse
|
35
|
Zhou Y, Zhao ZN, Zhang YL, Liu J, Yuan Q, Schneider U, Huang YY. Brønsted Acid-Catalyzed General Petasis Allylation and Isoprenylation of Unactivated Ketones. Chemistry 2020; 26:10259-10264. [PMID: 32432354 DOI: 10.1002/chem.202001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Abstract
Brønsted acid-catalyzed general Petasis allylation and isoprenylation of unactivated ketones were developed by using o-hydroxyaniline and the corresponding pinacolyl boronic esters. This robust methodology provided access to a broad variety of quaternary homoallylic amines and dienyl amines in high yields, proved to be applicable to a gram-scale synthesis, and allowed the synthesis of a potentially bioactive quaternary homoallylic aminodiol.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhen-Ni Zhao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu-Long Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Quan Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Uwe Schneider
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
36
|
Wang YF, Jiang ZH, Chu MM, Qi SS, Yin H, Han HT, Xu DQ. Asymmetric copper-catalyzed fluorination of cyclic β-keto esters in a continuous-flow microreactor. Org Biomol Chem 2020; 18:4927-4931. [PMID: 32573633 DOI: 10.1039/d0ob00588f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective homogeneous fluorination of cyclic β-keto esters catalyzed by diphenylamine linked bis(oxazoline)-Cu(OTf)2 complexes has been established in a continuous flow microreactor. The microreactor allowed an efficient transformation with reaction times ranging from 0.5 to 20 min, and the desired products were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee) at a low catalyst loading of 1 mol%.
Collapse
Affiliation(s)
- Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Hui Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hao Yin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hong-Te Han
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
37
|
Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Fan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanhua Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D. Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
38
|
George J, Kim HY, Oh K. Copper(i)/DM-SEGPHOS-catalyzed enantio- and diastereoselective conjugate boration to α-alkylidene-γ-lactams. Org Chem Front 2020. [DOI: 10.1039/c9qo01504c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A combination of CuCl and DM-SEGPHOS catalyst system has allowed the development of highly enantioselective and diastereoselective conjugate addition of bis(pinacolato)diboron to α-alkylidene-γ-lactams.
Collapse
Affiliation(s)
- Jimil George
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
39
|
Yang S, Chen Y, Ding Z. Recent progress of 1,1-difunctionalization of olefins. Org Biomol Chem 2020; 18:6983-7001. [PMID: 32966541 DOI: 10.1039/d0ob01323d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Olefins are a very important class of compounds and broadly used in the construction of various synthetic building blocks and practical industrial production. The difunctionalization of olefins provides one of the most powerful methods for the C-C or C-X bond formation with a rapid increase of the molecular complexity and synthetic value economically and effectively. Compared with the vigorous growth and abundant achievements of 1,2-difunctionalization of olefins, 1,1-difunctionalization is a relatively emerging and inadequately exploited research direction, despite being tremendously attractive from synthetic perspectives. In this minireview, we provide a brief overview of the advancements of 1,1-difunctionalization of olefins in the past twenty years, and prospects of future developments.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuhang Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhenhua Ding
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|