1
|
Basu U, Wilsmann A, Türck S, Hoffmeister H, Schiedel M, Gasser G, Ott I. Antiproliferative effects, mechanism of action and tumor reduction studies in a lung cancer xenograft mouse model of an organometallic gold(i) alkynyl complex. RSC Med Chem 2025:d4md00964a. [PMID: 40201730 PMCID: PMC11975047 DOI: 10.1039/d4md00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/08/2025] [Indexed: 04/10/2025] Open
Abstract
Organometallic complexes offer a wide range of properties like structural variety, reaction kinetics, tunable lipophilicity and alternate mechanisms of activation under physiological conditions compared to platinum chemotherapeutics and are thus being explored for their potential anticancer applications. In this regard, gold(i) organometallics hold a pivotal position for their ability to act on biological targets different from DNA (which is the primary target of platinum therapeutics), such as thioredoxin reductase. Here, we report on the stability, in vitro antiproliferative effects, protein binding, cellular uptake, mechanism of action, effects on mitochondrial respiration of cancer cells as well as in vivo tolerance, toxicity and tumor reduction in an A549 lung cancer xenograft mouse model of an organometallic gold(i) complex (1) bearing 4-ethynylanisole and triethylphosphane as ligands. The complex, which was stable in DMSO and reactive towards N-acetylcysteine, triggered strong antiproliferative effects in various cancer cell lines and had a protein binding of approximately 65% that reduced its generally efficient uptake into tumor cells. Antimetastatic properties were indicated for 1 in a scratch assay and strong inhibition of thioredoxin reductase (TrxR) was confirmed for the purified enzyme as well as in A549 lung cancer cells, which strongly overexpress TrxR. Real time monitoring of the oxygen consumption rate in multiple cancer cell lines, using the Seahorse Mito stress assay, demonstrated that mitochondrial respiration was severely disrupted, showing a significantly low oxygen consumption rate. Other respiratory parameters, such as proton efflux, spare respiratory capacity and maximal respiration, were also attenuated upon treatment with 1. The complex was well tolerated in vivo in mice at a dose of 10 mg kg-1 and showed tumor reduction compared to the control group of animals in a lung cancer xenograft model of nude mice. In summary, complex 1 represents a novel organometallic anticancer drug candidate with a mechanism related to TrxR inhibition and mitochondrial respiration inhibition, showing efficient in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
- Department of Chemistry, BITS Pilani K K Birla Goa Campus NH 17B Bypass Road Goa 403726 India
| | - Anna Wilsmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| | - Sebastian Türck
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| | - Henrik Hoffmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| | - Gilles Gasser
- Chimie Paris Tech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences 75005 Paris France
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| |
Collapse
|
2
|
Zhai XY, Zhao L. Aurophilic interaction-based aggregation of gem-digold(I) aryls towards high spin-orbit coupling and strong phosphorescence. Nat Commun 2025; 16:405. [PMID: 39762236 PMCID: PMC11704187 DOI: 10.1038/s41467-025-55842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds. To address this issue, we have developed a series of acceptor-donor organogold(I) luminescent compounds by incorporating a gem-digold moiety with various aryl donors. These compounds demonstrate wide-range tunable emission colors and impressive photoluminescence quantum yields of up to 78%, among the highest reported for polynuclear gold(I) compounds. We further reveal that the integration of the gem-digold moiety allows better interaction of gold 6s orbitals with aryl π orbitals, facilitates aryl-to-gold electron transfer, and reduces Pauli repulsion between digold units, finally engendering the formation of aurophilic interaction-based aggregates. Moreover, the strength of such intermolecular aurophilic interaction can be systematically regulated by the electron donor nature of aryl ligands. The formation of those aurophilic aggregates significantly enhances SOC from <10 to 239 cm-1 and mainly accounts for high-efficiency phosphorescent emission in solid state.
Collapse
Affiliation(s)
- Xiao-Yi Zhai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Huang YZ, Yang R, Zhang L, Chen ZN. Phosphorescent metallaknots of Au(I)-bis(acetylide) strands directed by Cu(I) π-coordination. Proc Natl Acad Sci U S A 2024; 121:e2403721121. [PMID: 39298486 PMCID: PMC11441568 DOI: 10.1073/pnas.2403721121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Knots containing metal atoms as part of their continuous strand backbone are termed as metallaknots. While several metallaknots have been synthesized through one-pot self-assembly, the designed synthesis of metallaknots by controlling the arrangement of entanglements and strands connectivity remains unexplored. Here, we report the synthesis of metallaknots composed with Au(I)-bis(acetylide) linkages and templated by Cu(I) ions. Varying the ratio of the building blocks results in the switchable formation of two trefoil knots with different stoichiometries and symmetries (C2 or D3) and an entangled metalla-complex. While the entangled complex formed serendipitously, the strand ends can be subsequently linked through coordinative closure to generate a 41 metallaknot in a highly designable fashion. The comparable structural characteristics of resulting metalla-complexes allow us to probe the correlations between their topologies and photophysical properties, showing the backbone rigidity of knots endows complexes with excellent phosphorescent properties. This strategy, in conjunction with the coordinative closure approach, provides a straightforward route for the formation of highly phosphorescent metallaknots that were previously challenging to access.
Collapse
Affiliation(s)
- Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Raorao Yang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Liang Zhang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| |
Collapse
|
4
|
Burguera S, Bauzá A, Frontera A. A novel approach for estimating the strength of argentophilic and aurophilic interactions using QTAIM parameters. Phys Chem Chem Phys 2024; 26:16550-16560. [PMID: 38829286 DOI: 10.1039/d4cp00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metallophilic interactions, specifically argentophilic (Ag⋯Ag) and aurophilic (Au⋯Au) interactions, play a crucial role in stabilizing various molecular and solid-state structures. In this manuscript, we present a convenient method to estimate the strength of argentophilic and aurophilic interactions based on quantum theory of atoms in molecules (QTAIM) parameters evaluated at the bond critical points connecting the metal centres. We employ density functional theory (DFT) calculations and the QTAIM parameters to develop this energy predictor. To validate the reliability and applicability of our method, we test it using a selection of X-ray crystal structures extracted from the cambridge structural database (CSD), where argentophilic and aurophilic interactions are known to be significant in their solid-state arrangements. This method offers a distinct advantage in systems where multiple interactions, beyond metallophilic interactions, contribute to the overall stability of the structure. By employing our approach, researchers can distinctly quantify the strength of argentophilic and aurophilic interactions, facilitating a deeper understanding of their impact on molecular and solid-state properties. This method fills a critical gap in the existing literature, offering a valuable tool to researchers seeking to unravel the intricate interactions in metal-containing compounds.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| |
Collapse
|
5
|
Posada Urrutia M, Kaul N, Kaper T, Hurrell D, Chiang L, Wells JAL, Orthaber A, Hammarström L, Pilarski LT, Dyrager C. Access to long-lived room temperature phosphorescence through auration of 2,1,3-benzothiadiazole. Dalton Trans 2024; 53:5658-5664. [PMID: 38441110 DOI: 10.1039/d4dt00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A series of 2,1,3-benzothiadiazole-Au(I)-L complexes have been synthesised, structurally characterised and investigated for their photophysical properties. These are the first organometallic Au(I) complexes containing a C-Au bond on the highly electron-deficient benzothiadiazole unit. The complexes exhibit solution-phase phosphorescence at room temperature, assigned to the intrinsic triplet state of the benzothiadiazole unit that is efficently populated through its attachment to gold. Comparison with routinely reported Au(I) complexes, which include intervening alkenyl linkers, suggests that previous assignments of their phosphorescence as 1π → π*(CCR) might be incomplete. Our observations affirm that, in addition to the heavy atom effect, breaking symmetry in the involved aryl motif may be of importance in controlling the luminescence properties.
Collapse
Affiliation(s)
| | - Nidhi Kaul
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Tobias Kaper
- Department of Chemistry-BMC, Uppsala University, Box 576 751 23, Uppsala, Sweden.
| | - Dustin Hurrell
- Department of Chemistry, University of the Fraser Valley, V2S7M8, Abbotsford, BC, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, V2S7M8, Abbotsford, BC, Canada
| | - Jordann A L Wells
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Lukasz T Pilarski
- Department of Chemistry-BMC, Uppsala University, Box 576 751 23, Uppsala, Sweden.
| | - Christine Dyrager
- Department of Chemistry-BMC, Uppsala University, Box 576 751 23, Uppsala, Sweden.
| |
Collapse
|
6
|
Strelnik ID, Dayanova IR, Faizullin BA, Mustafina AR, Gerasimova TP, Kolesnikov IE, Islamov DR, Litvinov IA, Voloshina AD, Sapunova AS, Gubaidullin AT, Musina EI, Karasik AA. Linkage of the Dinuclear Gold(I) Complex Luminescence and Origin of Endocyclic Amino Group of Cyclic P 2N 2-Bridging Ligands. Inorg Chem 2023; 62:19474-19487. [PMID: 37983813 DOI: 10.1021/acs.inorgchem.3c02437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Gold(I) complexes of LAu2Cl2 composition based on P2N2 ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp2- or sp3-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The N-aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an N-alkyl substituted ligand with a pyramidal nitrogen atom. The substituents at nitrogen atoms also control the origin of the emission, which is phosphorescence for the N-aryl substituted complex and fluorescence for the N-alkylaryl substituted complex. The phosphorescent gold(I) complex displays high cytotoxicity without selectivity toward the m-HeLa and normal cells, but the core-shell nanoparticles formed on the base of the complex demonstrate reduced cytotoxicity. The luminescence of the NPs allows tracking the complexes in the cell samples.
Collapse
Affiliation(s)
- Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Bulat A Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg University, 5 Ulianovskaya Street, Saint Petersburg 198504, Russia
| | - Daut R Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of the Russian Academy of Sciences, 31 Kremlevskaya Street, Kazan 420008, Russia
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| |
Collapse
|
7
|
Song C, An L, Wang Q, Zhang H, Li G. Unraveling the Marked Differences of the Excited-State Properties of Arylgold(III) Complexes with C ∧N ∧C Tridentate Ligands. Inorg Chem 2023; 62:15382-15391. [PMID: 37700580 DOI: 10.1021/acs.inorgchem.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three structurally similar gold(III) complexes with C∧N∧C tridentate ligands, [1; C∧N∧C = 2,6-diphenylpyridine], [2; C∧N∧C = 2,6-diphenylpyrazine], and [3; C∧N∧C = 2,6-diphenyltriazine], have been investigated theoretically to rationalize the marked difference in emission behaviors. The geometrical and electronic structures, spectra properties, radiative and nonradiative decay processes, as well as reverse intersystem crossing and reverse internal conversion (RIC) processes were thoroughly analyzed using density functional theory (DFT) and time-dependent DFT calculations. The computed results indicate that there is a small energy difference Δ E T 1 - T 1 ' between the lowest-energy triplet state (T1) and the second lowest-energy triplet state (T1') of complexes 2 and 3, suggesting that the excitons in the T1 state can reach the emissive higher-energy T1' through the RIC process. In addition, the non-emissive T1 states of gold(III) complexes in solution can be ascribed to the easily accessible metal-centered (3MC) state or possibly tunneling into high-energy vibrationally excited singlet states for nonradiative decay. The low efficiency of 3 is attributed to the deactivation pathway via the 3MC state. The present study elucidates the relationship between structure and property of gold(III) complexes featuring C∧N∧C ligands and providing a comprehensive understanding of the significant differences in their luminescence behaviors.
Collapse
Affiliation(s)
- Chongping Song
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Lin An
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Qinggao Wang
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guoqiang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
8
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
9
|
Romo-Islas G, Ward JS, Rissanen K, Rodríguez L. Heterometallic Au(I)-Cu(I) Clusters: Luminescence Studies and 1O 2 Production. Inorg Chem 2023; 62:8101-8111. [PMID: 37191273 DOI: 10.1021/acs.inorgchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Wu XM, Wang JY, Huang YZ, Chen ZN. Scissor-like Au4Cu2 Cluster with Phosphorescent Mechanochromism and Thermochromism. Molecules 2023; 28:molecules28073247. [PMID: 37050014 PMCID: PMC10096801 DOI: 10.3390/molecules28073247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Reaction of [Au(tht)2](ClO4) (tht = tetrahydrothiophene), [Cu(CH3CN)4](ClO4), 3,6-di-tert-butyl-1,8-diethynyl-9H-carbazole (H3decz), and bis(2-diphenylphosphinophenyl)ether (POP) in the presence of triethylamine (NEt3) gave the cluster complex Au4Cu2(decz)2(POP)2 as yellow crystals. As revealed by X-ray crystallography, the Au4Cu2 cluster exhibits scissor-like structure sustained by two decz and two POP ligands and stabilized by Au-Cu and Au-Au interactions. The Au4Cu2 cluster shows bright yellow to orange photoluminescence upon irradiation at >300 nm, arising from 3[π (decz)→5d (Au)] 3LMCT (ligand-to-metal charge transfer) and 3[π→π* (decz)] 3IL (intraligand) triplet states as revealed by theoretical and computational studies. When it is mechanically ground, reversible phosphorescence conversion from yellow to red is observed owing to more compact molecular packing and thus stronger intermetallic interaction. Variable-temperature luminescence studies reveal that it displays distinct red-shifts of the emission whether the temperature is elevated or lowered from ambient temperature, suggestive of exceptional thermochromic phosphorescence characteristics.
Collapse
Affiliation(s)
- Xue-Meng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- ShanghaiTech University, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- ShanghaiTech University, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
11
|
Petrovskii S, Paderina A, Sizova A, Grachova E. Homoleptic Alkynylphosphonium Au(I) Complexes as Push-Pull Phosphorescent Emitters. Inorg Chem 2023; 62:5123-5133. [PMID: 36939095 DOI: 10.1021/acs.inorgchem.2c04360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A series of compounds P1-P4 bearing terminal alkynyl sites connected with a phosphonium group via different π-conjugated linkers have been synthesized. The compounds themselves are efficient push-pull emitters and exhibit bright fluorescence in blue and near-UV regions. P1-P4 were used as alkynyl ligands to obtain a series of homoleptic bis-alkynyl Au(I) complexes 1-4. The complexes demonstrate bright phosphorescence and dual emission with dominating phosphorescence (2-4). Terphenyl derivative complex 3 exhibits warm white emission in DMSO solution and pure white emission in PMMA films. Time-dependent density functional theory calculations have shown that the T1 excited state has a hybrid MLCT/ILCT nature with a dominant contribution of charge transfer across a ligand-centered "D-π-A" system. The variation of linker allows tuning the effect of intermolecular charge transfer and thus changing the electronic and photophysical properties of the organogold "D-π-A" system. The results presented unambiguously display the advances of the conception of organometallic "D-π-A" construction.
Collapse
Affiliation(s)
- Stanislav Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Anastasia Sizova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
12
|
Sobrerroca C, Angurell I, de Aquino A, Romo G, Jubert C, Rodríguez L. Mono- and Dinuclear Gold(I) Coumarin Complexes: Luminescence Studies and Singlet Oxygen Production. Chempluschem 2023; 88:e202300020. [PMID: 36800440 DOI: 10.1002/cplu.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
The 4-(thiolmethyl)-7-(diethylamino)-2H-chromen-2-one ligand has been synthesized and used as chromophore in several mono- and dinuclear gold(I) compounds that contain a phosphane at the second coordination position. Four final products were able to obtain in pure form containing one coumarin and one phosphane ligand in the case of PTA (1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane) and PPh3 (triphenylphosphine); one coumarin and two gold(I)-phosphane groups in the case of phosphane=DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) and two coumarin and two gold(I) atoms in the case of phosphane=DPEphos (bis[(2-diphenylphosphino)phenyl]ether), when it was used a diphosphane. Other diphosphane ligands used were not able to give the desired products in pure form. The luminescent properties of the compounds are governed by the fluorescence of the coumarin moiety in all compounds both for measurements carried out in solution and also immobilized in PMMA organic matrix. Phosphorescence emission can be detected in all cases at 77 K both for the uncoordinated coumarin ligand and the gold(I) derivatives, being more favoured in the presence of the gold(I) heavy atom. The compounds have been used as photosensitizers to generate 1 O2 with moderate quantum yields values.
Collapse
Affiliation(s)
- Carlota Sobrerroca
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Inmaculada Angurell
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Araceli de Aquino
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Guillermo Romo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Camille Jubert
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
13
|
Zhang B, Zhou WQ, Liu XT, Sun Y, Zhang QW. A Ni-catalyzed asymmetric C(sp)-P cross-coupling reaction for the synthesis of P-stereogenic alkynylphosphines. Chem Sci 2023; 14:1286-1290. [PMID: 36756330 PMCID: PMC9891383 DOI: 10.1039/d2sc05841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
Due to the high reactivity of the triple bond, P-stereogenic alkynylphosphines could be easily derivatized, serving as universal building blocks for structurally diverse phosphine compounds. However, the synthesis of alkynylphosphines via direct P-C bond formation was unprecedented. Here, we report an efficient method for the synthesis of P-stereogenic alkynylphosphines with high enantioselectivity via a Ni-catalyzed asymmetric cross-coupling reaction. The reaction could tolerate a variety of functional groups, affording products that can be converted into useful phosphine derivatives.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Wen-Qing Zhou
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Xu-Teng Liu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Yingying Sun
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
14
|
de Aquino A, Ward JS, Rissanen K, Aullón G, Lima JC, Rodríguez L. Intra- vs Intermolecular Aurophilic Contacts in Dinuclear Gold(I) Compounds: Impact on the Population of the Triplet Excited State. Inorg Chem 2022; 61:20931-20941. [PMID: 36512673 PMCID: PMC9795547 DOI: 10.1021/acs.inorgchem.2c03351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two series of dinuclear gold(I) complexes that contain two Au-chromophore units (chromophore = dibenzofurane or dimethylfluorene) connected through a diphosphane bridge that differs in the flexibility and length (diphosphane = dppb for 1,4-bis(diphenylphosphino)butane, DPEphos for bis[(2-diphenylphosphino)phenyl]ether, xanthphos for 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and BiPheP for 2,2'-bis(diphenylphosphino)-1,1'-biphenyl) have been synthesized and structurally characterized. Their photophysical properties have been carefully investigated, paying attention to the role of the presence, or absence, of aurophilic contacts and their nature (intra- or intermolecular character). This analysis was permitted due to the X-ray crystallographic determination of all of the structures of the compounds discussed herein. The quantum yields of the triplet population, ϕT, have been calculated by nanosecond-laser flash photolysis measurements, and we could determine the main role of the character of the aurophilic contacts in the resulting ϕT, being especially favored in the presence of intermolecular contacts. Time-dependent density functional theory (TD-DFT) calculations support the absorption and emission assignments and the shorter distance between S1 and the closest triplet excited state energy in the case of the compounds with a higher triplet-state population.
Collapse
Affiliation(s)
- Araceli de Aquino
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain,Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S. Ward
- Department
of Chemistry, Nanoscience Center, University
of Jyvaskyla, 40014 Jyvaskylä, Finland
| | - Kari Rissanen
- Department
of Chemistry, Nanoscience Center, University
of Jyvaskyla, 40014 Jyvaskylä, Finland
| | - Gabriel Aullón
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain,Institut
de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - João Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal,
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain,Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain,
| |
Collapse
|
15
|
Lin X, Li W, Wen Y, Su L, Zhang X. Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials 2022; 287:121603. [PMID: 35688028 DOI: 10.1016/j.biomaterials.2022.121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
As a non-invasive visualization technique, photoluminescence imaging (PLI) has found its huge value in many biological applications associated with intracellular process monitoring and early and accurate diagnosis of diseases. PLI can also be combined with therapeutics to build imaging-guided theragnostic platforms for achieving early and precise treatment of diseases. Photodynamic therapy (PDT) as a quintessential phototheranostics technology has gained great benefits from the combination with PLI. Recently, aggregation-induced emission (AIE)-active materials have emerged as one of the most promising bioimaging and phototheranostic agents. Most of AIEgens, however, need to be chemically engineered to form versatile nanocomposites with improved their photophysical property, photochemical activity, biocompatibility, etc. In this review, we focus on three categories of AIE-active nanocomposites and highlight their application progresses in the intracellular biological process monitoring and PLI-guided PDT. We hope this review can guide further development of AIE-active nanocomposites and promote their practical applications for monitoring intracellular biological processes and imaging-guided PDT.
Collapse
Affiliation(s)
- Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wei Li
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| |
Collapse
|
16
|
Dinuclear gold(I) Complexes with Bidentate NHC Ligands as Precursors for Alkynyl Complexes via Mechanochemistry. Molecules 2022; 27:molecules27134317. [PMID: 35807560 PMCID: PMC9268586 DOI: 10.3390/molecules27134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
The use of alkynyl gold(I) complexes covers different research fields, such as bioinorganic chemistry, catalysis, and material science, considering the luminescent properties of the complexes. Regarding this last application, we report here the synthesis of three novel dinuclear gold(I) complexes of the general formula [(diNHC)(Au-C≡CPh)2]: two Au-C≡CPh units are connected by a bridging di(N-heterocyclic carbene) ligand, which should favor the establishment of semi-supported aurophilic interactions. The complexes can be easily synthesized through mechanochemistry upon reacting the pristine dibromido complexes [(diNHC)(AuBr)2] with phenylacetylene and KOH. Interestingly, we were also able to isolate the monosubstituted complex [(diNHC)(Au-C≡CPh)(AuBr)]. The gold(I) species were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. The emission properties were also evaluated, and the salient data are comparable to those of analogous compounds reported in the literature.
Collapse
|
17
|
Pinto A, Ward JS, Rissanen K, Smith M, Rodríguez L. Aggregation of gold(I) complexes: phosphorescence vs. singlet oxygen production. Dalton Trans 2022; 51:8795-8803. [PMID: 35616256 DOI: 10.1039/d2dt01154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report on the synthesis of six new phosphane-gold(I)-4-ethynylaniline complexes (neutral and cationic), with a tris-naphthalene substituted tertiary phosphane bearing a secondary amine as a linker and containing different halogen groups (Cl and Br) in the naphthyl group. We have demonstrated in this work how the careful control of the intermolecular aggregation process can modulate the competition between phosphorescence emission and energy transfer from the triplet state of the gold(I) complexes to produce singlet oxygen.
Collapse
Affiliation(s)
- Andrea Pinto
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Jas S Ward
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Martin Smith
- Department of Chemistry, Loughborough University, Loughborough, Leics LE11 3TU, UK
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self-Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic Au I -, Au I /Ag I -, or Au I /Cu I -Alkynyl Coordination. Angew Chem Int Ed Engl 2022; 61:e202200748. [PMID: 35183066 DOI: 10.1002/anie.202200748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.
Collapse
Affiliation(s)
- Guang-Tao Xu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hui-Xing Shu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
19
|
Cunha C, Pinto A, Galvão A, Rodríguez L, Seixas de Melo JS. Aggregation-Induced Emission with Alkynylcoumarin Dinuclear Gold(I) Complexes: Photophysical, Dynamic Light Scattering, and Time-Dependent Density Functional Theory Studies. Inorg Chem 2022; 61:6964-6976. [PMID: 35475605 PMCID: PMC9775461 DOI: 10.1021/acs.inorgchem.2c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aggregation-induced emission (AIE) has gained a remarkable amount of interest in the past 20 years, but the majority of the studies are based on organic structures. Herein, three dinuclear gold(I) complexes, with the general formula [PPh2XPPh2-Au2-Coum2], where the Au(I) atom is linked to three different diphosphanes [PPh2XPPh2; DPPM for X = CH2 (1.1), DPPP for X = (CH2)3 (1.2), and DPPA for X = C≡C (1.3)] and the propynyloxycoumarin precursor (1, 4-methyl-substituted coumarin), have been synthesized. The compounds present AIE characteristics, AIEgens, with high luminescence quantum yields in the solid state when they are compared to dilute solutions. Photophysical studies (steady-state and time-resolved fluorescence) were obtained, with AIE being observed with the three gold(I) complexes in acetonitrile/water mixtures. This was further corroborated with dynamic light scattering measurements. Time-dependent density functional theory (TDDFT) electronic calculations show that the compounds have different syn and anti conformations (relative to the coumarin core) with 1.1 syn and 1.2 and 1.3 both anti. From time-resolved fluorescence experiments, the augment in the contribution of the longer decay component is found to be associated with the emission of the aggregate (AIE effect) and its nature (involving a dimer) rationalized from TDDFT electronic calculations.
Collapse
Affiliation(s)
- Carla Cunha
- CQC-IMS,
Department of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Andrea Pinto
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1−11, Barcelona E-08028, Spain
| | - Adelino Galvão
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1−11, Barcelona E-08028, Spain,Institut
de Nanociència i Nanotecnologia. Universitat de Barcelona, Barcelona 08028, Spain,
| | - J. Sérgio Seixas de Melo
- CQC-IMS,
Department of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal,
| |
Collapse
|
20
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self‐Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic AuI‐, AuI/AgI‐, or AuI/CuI‐Alkynyl Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Xiao-Yong Chang
- Southern University of Science and Technology Chemistry CHINA
| | | | | | - Qingyun Wan
- The University of Hong Kong Chemistry HONG KONG
| | | | - Wai-Pong To
- The University of Hong Kong Chemistry HONG KONG
| | | | - Chi-Ming Che
- The University of Hong Kong Pokfulam Road - Hong Kong HONG KONG
| |
Collapse
|
21
|
Mihaly JJ, Wolf SM, Phillips AT, Mam S, Yung Z, Haley JE, Zeller M, de La Harpe K, Holt E, Grusenmeyer TA, Collins S, Gray TG. Synthetically Tunable White-, Green-, and Yellow-Green-Light Emission in Dual-Luminescent Gold(I) Complexes Bearing a Diphenylamino-2,7-fluorenyl Moiety. Inorg Chem 2022; 61:1228-1235. [PMID: 34982547 DOI: 10.1021/acs.inorgchem.1c02405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The syntheses and photophysical characterization of five new gold(I) complexes bearing diphenylamine-substituted fluorenyl moieties are reported; four are characterized by X-ray diffraction crystallography. Ancillary ligation on gold(I) is provided by organophosphine and N-heterocyclic carbene ligands. Two complexes, Au-DPA0 and Au-DPA1, are σ-aryls, two, Au-ADPA0 and Au-ADPA1, are σ-alkynyls, and one, Au-TDPA1, is a σ-triazolyl bound through carbon. All complexes show vibronically structured absorption and luminescence bands that are assignable to π-π* transitions localized on the diphenylamine-substituted fluorenyl π system. The excited-state dynamics of all five chromophores are governed by selection of the ancillary ligand and σ attachment of the diphenylamine-substituted fluorenyl moiety. All of these chromophores are dual luminescent in a toluene solution at 298 K. The luminescence from the aryl derivatives, Au-ADPA0 and Au-DPA1, appears green. The alkynyl derivative containing a phosphine ancillary ligand, Au-ADPA0, is a white-light emitter, while the alkynyl derivative containing an N-heterocyclic carbene ancillary ligand, Au-ADPA1, is a yellow-light emitter. The luminescence from the triazolyl-linked chromophore, Au-TDPA1, appears as yellow-green. Spin-restricted density functional theory calculations support the assignments of ligand-centric optical transitions but with contributions of ligand-to-metal charge transfer involving the vacant Au 6p orbital.
Collapse
Affiliation(s)
- Joseph J Mihaly
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Steven M Wolf
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States.,General Dynamics Information Technology, 5000 Springfield Pike, Dayton, Ohio 45431, United States
| | - Alexis T Phillips
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Sokhalita Mam
- Department of Chemistry, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Zheng Yung
- Department of Chemistry, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Joy E Haley
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Ethan Holt
- Department of Chemistry, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Tod A Grusenmeyer
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Stephanie Collins
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Casciotti M, Romo-Islas G, Álvarez M, Molina F, Muñoz-Molina JM, Belderrain TR, Rodríguez L. Gold( i) complexes bearing a PNP-type pincer ligand: photophysical properties and catalytic investigations. Dalton Trans 2022; 51:17162-17169. [DOI: 10.1039/d2dt02429b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of two dinuclear and five tetranuclear gold(i) complexes bearing the 2,6-bis(diphenylphosphinomethyl)pyridine diphosphane ligand (DPPMPY) are herein reported.
Collapse
Affiliation(s)
- Martina Casciotti
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Álvarez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - José María Muñoz-Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Tomás R. Belderrain
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Malmberg R, Venkatesan K. Recent Advances in the Development of Blue and Deep‐Blue Emitting Gold(I) and Gold(III) Molecular Systems. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre Macquarie University Sydney NSW 2109 Australia
| | - Koushik Venkatesan
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
24
|
Abramova EO, Paderina AV, Slavova SO, Kostenko EA, Eliseenkov EV, Petrovskii SK, Gitlina AY, Boyarskiy VP, Grachova EV. Just Add the Gold: Aggregation-Induced-Emission Properties of Alkynylphosphinegold(I) Complexes Functionalized with Phenylene-Terpyridine Subunits. Inorg Chem 2021; 60:18715-18725. [PMID: 34823354 DOI: 10.1021/acs.inorgchem.1c02125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of organometallic complexes containing an alkynylphosphinegold(I) fragment and a phenylene-terpyridine moiety connected together by flexible linker have been prepared using the specially designed terpyridine ligands. The compounds were studied crystallographically to reveal that all of them contain a linearly coordinated Au(I) atom and a free terpyridine moiety. The different orientations of the molecules relative to each other in the solid state determine the multiple noncovalent interactions such as antiparallel ππ stacking, CH-π, and CH-Au, but no aurophilic interactions are realized. The organometallic Au(I) complexes obtained show fluorescence in the solution and dual singlet-triplet emission in the solid state. This means that their photophysical behavior is determined by both intermolecular lattice-defined interactions and Au(I) atom introduction. Density functional theory computational analysis supported the assignment of emission to intraligand electronic transitions only inside the phenylene-terpyridine part with no Au(I) involved. In addition, a study of the nature of the excited states for the "dimer" with an antiparallel orientation of the terpyridine fragment showed that this orientation leads to the generation of abstracted singlet and triplet states, lowering their energy in comparison with the monomer complex. Thus, the complexes obtained can be qualified as examples of Au(I)-containing organometallic aggregation-induced-emission luminogens.
Collapse
Affiliation(s)
- Evgenia O Abramova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra V Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Sofia O Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ekaterina A Kostenko
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Eugene V Eliseenkov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Stanislav K Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Anastasia Yu Gitlina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.,Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vadim P Boyarskiy
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
25
|
Pinto A, Roma-Rodrigues C, Ward JS, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodríguez L. Aggregation versus Biological Activity in Gold(I) Complexes. An Unexplored Concept. Inorg Chem 2021; 60:18753-18763. [PMID: 34719915 DOI: 10.1021/acs.inorgchem.1c02359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aggregation process of a series of mono- and dinuclear gold(I) complexes containing a 4-ethynylaniline ligand and a phosphane at the second coordination position (PR3-Au-C≡CC6H4-NH2, complexes 1-5, and (diphos)(Au-C≡CC6H4-NH2)2, complexes 6-8), whose biological activity was previously studied by us, has been carefully analyzed through absorption, emission, and NMR spectroscopy, together with dynamic light scattering and small-angle X-ray scattering. These experiments allow us to retrieve information about how the compounds enter the cells. It was observed that all compounds present aggregation in fresh solutions, before biological treatment, and thus they must be entering the cells as aggregates. Inductively coupled plasma atomic emission spectrometry measurements showed that mononuclear complexes are mainly found in the cytosolic fraction; the dinuclear complexes are mainly found in a subsequent fraction composed of nuclei and cytoskeleton. Additionally, dinuclear complex 8 affects the actin aggregation to a larger extent, suggesting a cooperative effect of dinuclear compounds.
Collapse
Affiliation(s)
- Andrea Pinto
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Catarina Roma-Rodrigues
- UCIBIO─Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jväskylä, Finland
| | - Rakesh Puttreddy
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jväskylä, Finland
| | - Pedro V Baptista
- UCIBIO─Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO─Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2825-152 Monte de Caparica, Portugal
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Conceptual advances in the preparation and excited-state properties of neutral luminescent (C^N) and (C^C*) monocyclometalated gold(III) complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Loftus LM, Olson EC, Stewart DJ, Phillips AT, Arumugam K, Cooper TM, Haley JE, Grusenmeyer TA. Zn Coordination and the Identity of the Halide Ancillary Ligand Dramatically Influence the Excited-State Dynamics and Bimolecular Reactions of 2,3-Di(pyridin-2-yl)benzo[ g]quinoxaline. Inorg Chem 2021; 60:16570-16583. [PMID: 34662517 DOI: 10.1021/acs.inorgchem.1c02484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The optical properties of coordination complexes with ligands containing nitrogen heterocycles have been extensively studied for decades. One subclass of these materials, metal complexes utilizing substituted pyrazines and quinoxalines as ligands, has been employed in a variety of photochemical applications ranging from photodynamic therapy to organic light-emitting diodes. A vast majority of this work focuses on characterization of the metal-to-ligand charge-transfer states in these metal complexes; however, literature reports rarely investigate the photophysics of the parent pyrazine or quinoxaline ligand or perform control experiments utilizing metal complexes that lack low-lying charge-transfer (CT) states in order to determine how metal-atom coordination influences the photophysical properties of the ligand. With this in mind, we examined the steady-state and time-resolved photophysics of 2,3-di(pyridin-2-yl)benzo[g]quinoxaline (dpb) and explored how the coordination of ZnX2 (X = Cl-, Br-, I-) affects the photophysical properties of dpb. In dpb, we find that the dominant mode of deactivation from the singlet excited state is intersystem crossing (ISC). Coordination of ZnX2 perturbs the relative energies of the ππ* and nπ* excited states of dpb, leading to drastically different rates of ISC as well as radiative and nonradiative decay in the [Zn(dpb)X2] complexes compared to dpb. These differences in the rates change the dominant singlet-excited-state decay pathway from ISC in dpb to a mixture of ISC and fluorescence in [Zn(dpb)Cl2] and [Zn(dpb)Br2] and to nonradiative decay in [Zn(dpb)I2]. Coordination of ZnX2 and the choice of the halide ligand also have profound effects on the rate constants for excited-state bimolecular reactions, including triplet-triplet annihilation and oxygen quenching. These results demonstrate that metal coordination, even in complexes lacking low-lying CT states, and the choice of the ancillary ligand can dramatically alter the photophysical properties of chromophores containing nitrogen heterocycles.
Collapse
Affiliation(s)
- Lauren M Loftus
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,General Dynamics Information Technology, 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Emma C Olson
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - David J Stewart
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Alexis T Phillips
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Kuppuswamy Arumugam
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| | - Thomas M Cooper
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Joy E Haley
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
28
|
Pinto A, Cunha C, Aullón G, Lima JC, Rodríguez L, Seixas de Melo JS. Comprehensive Investigation of the Photophysical Properties of Alkynylcoumarin Gold(I) Complexes. J Phys Chem B 2021; 125:11751-11760. [PMID: 34665627 DOI: 10.1021/acs.jpcb.1c07985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Six gold(I) complexes (R3P-Au-Coum) containing three different alkynylcoumarin chromophores (Coum) with different electron-donating and electron-withdrawing characteristics and two different water-soluble phosphanes (PR3 = PTA (a) and DAPTA (b)) have been synthesized (1a,b, unsubstituted coumarin; 2a,b, 4-methyl substituted coumarin; 3a,b, 3-chloro and 4-methyl substituted coumarin). A comprehensive study of the photophysical properties of the R3P-Au-Coum, together with their propynyloxycoumarin precursors 1-3, was performed in solution at room and low temperatures. Spectral and photophysical characteristics of the R3P-Au-Coum essentially depend on the electronic characteristics of the propynyloxycoumarin ligand. The presence of the Au(I) atom was found to be responsible for an increase of the intersystem crossing, with triplet state quantum yield values, ϕT, ranging from ∼0.05 to 0.35 and high coumarin phosphorescence quantum yield values for derivatives 1 and 2; fluorescence dominates the deactivation in derivatives 3. Efficient singlet oxygen photosensitization was observed for the new compounds 3a,b. From TDDFT calculations, the relevant HOMO and LUMO of the compounds, i.e., those involved in the transitions, are dominated by the frontier orbitals associated with the coumarin core. The Au(I)-phosphane structure introduces a new transition assigned to an intraligand transition involving the phosphane ligand, and π(C≡C) system, to the p orbitals of phosphorus and gold atoms.
Collapse
Affiliation(s)
- Andrea Pinto
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carla Cunha
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
29
|
Gründlinger P, Mardare CC, Wagner T, Monkowius U. A trigonal coordination of Au(I) phosphane complexes stabilized by O-H ⋯ X (X = Cl -, Br -, I -) interactions. MONATSHEFTE FUR CHEMIE 2021; 152:1201-1207. [PMID: 34720196 PMCID: PMC8550744 DOI: 10.1007/s00706-021-02843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 11/01/2022]
Abstract
In this work, we show that intramolecular hydrogen bonding can be used to stabilize tri-coordinated phosphane-gold(I) complexes. Two molecular structures of 2-(diphenylphosphino)benzoic acid (L) coordinated to a gold(I) atom were determined by single-crystal X-ray diffraction. The linear L-Au-Br shows a standard linear coordination and dimerizes via hydrogen bonds of the carboxylic acid. Upon addition of two additional phosphane ligands the complex [L3Au]X is formed which is stabilized by three intramolecular -C(O)O-H … X hydrogen bonds as proven by the X-ray structure of the respective chlorido-complex. X-ray powder diffractograms suggest the same structure also for X- = Br- and I-. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00706-021-02843-2.
Collapse
Affiliation(s)
- Petra Gründlinger
- Institute of Experimental Physics–Surface Science Division, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Cezarina Cela Mardare
- Institute of Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
- Faculty of Medicine/Dental Medicine, Department of Physics and Chemistry of Materials, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Thorsten Wagner
- Institute of Experimental Physics–Surface Science Division, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
30
|
Sorbelli D, Belanzoni P, Belpassi L. Tuning the Gold(I)‐Carbon σ Bond in Gold‐Alkynyl Complexes through Structural Modifications of the NHC Ancillary Ligand: Effect on Spectroscopic Observables and Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| | - Paola Belanzoni
- Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| |
Collapse
|
31
|
Rosental M, Coldman RN, Moro AJ, Angurell I, Gomila RM, Frontera A, Lima JC, Rodríguez L. Using Room Temperature Phosphorescence of Gold(I) Complexes for PAHs Sensing. Molecules 2021; 26:molecules26092444. [PMID: 33922155 PMCID: PMC8122727 DOI: 10.3390/molecules26092444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022] Open
Abstract
The synthesis of two new phosphane-gold(I)–napthalimide complexes has been performed and characterized. The compounds present luminescent properties with denoted room temperature phosphorescence (RTP) induced by the proximity of the gold(I) heavy atom that favors intersystem crossing and triplet state population. The emissive properties of the compounds together with the planarity of their chromophore were used to investigate their potential as hosts in the molecular recognition of different polycyclic aromatic hydrocarbons (PAHs). Naphthalene, anthracene, phenanthrene, and pyrene were chosen to evaluate how the size and electronic properties can affect the host:guest interactions. Stronger affinity has been detected through emission titrations for the PAHs with extended aromaticity (anthracene and pyrene) and the results have been supported by DFT calculation studies.
Collapse
Affiliation(s)
- Marian Rosental
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Richard N. Coldman
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.J.M.); (J.C.L.)
| | - Inmaculada Angurell
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Gomila
- Serveis Científico Tècnics, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Baleares, Spain;
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Baleares, Spain;
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.J.M.); (J.C.L.)
| | - Laura Rodríguez
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; (M.R.); (R.N.C.); (I.A.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
32
|
Recent Progress on Supramolecular Luminescent Assemblies Based on Aurophilic Interactions in Solution. INORGANICS 2021. [DOI: 10.3390/inorganics9050032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of supramolecular systems showing aurophilic interactions in solution is gaining much attention in the last years. This is due to the intriguing photophysical properties of gold(I) complexes, which usually confer to these supramolecular assemblies interesting luminescent properties, as well as the possibility of morphological modulation, through fine tuning of inter- and intramolecular aurophilic interactions, in synergy with the formation of other supramolecular contacts. In this work, an overview of the advances made in this area since 2015 is presented. A large variety of systems showing different spectroscopical and structural topologies has been reported. Moreover, these supramolecular assemblies have proven to be useful in a wide range of applications.
Collapse
|
33
|
de Aquino A, Caparrós FJ, Truong KN, Rissanen K, Ferrer M, Jung Y, Choi H, Lima JC, Rodríguez L. Gold(i)-doped films: new routes for efficient room temperature phosphorescent materials. Dalton Trans 2021; 50:3806-3815. [PMID: 33704345 DOI: 10.1039/d1dt00087j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of four novel gold(i)-phosphane complexes coordinated to 9-phenanthrene chromophore has been carried out through the reaction of 9-phenanthreneboronic acid and the corresponding AuClPR3 (PR3 = PPh3 for triphenylphosphane (1a); 1,4-bis(diphenylphosphanyl)butane or dppb (2b); bis(diphenylphosphanyl)acetylene or dppa (2c); (AuCl)2(diphos) (diphos = bis(diphenylphosphanyl)methane or dppm (3)) sources. The X-ray crystal structures of compounds 1a and 2b show the existence of MOF-like intermolecular assemblies that contain empty inner cavities in the absence of aurophilic contacts. In contrast, the formation of a tetranuclear complex with intramolecular aurophilic interactions was evidenced for 3. Photophysical characterization indicates dual emission in all gold(i) complexes when oxygen is removed from the sample, while only fluorescence emission is recorded for the uncoordinated ligand. The introduction of the compounds within PMMA and Zeonex was assayed, and luminescent films containing gold(i) complexes where phosphorescence is the sole pathway for emission are obtained, instead of the dual emission (with significant fluorescence contribution) recorded in solution.
Collapse
Affiliation(s)
- Araceli de Aquino
- Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Synthesis of N-heterocyclic carbene gold(I) complexes. Nat Protoc 2021; 16:1476-1493. [PMID: 33504989 DOI: 10.1038/s41596-020-00461-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/09/2020] [Indexed: 01/30/2023]
Abstract
N-heterocyclic carbene gold(I) chloride and hydroxide complexes are regularly used as synthons to access various oxygen-, nitrogen- or carbon-bound gold complexes. They are also widely employed as efficient catalysts in addition reactions of hydroelements to unsaturated bonds and in several rearrangement and decarboxylation protocols. Here we describe the multigram synthesis of the most common mononuclear N-heterocyclic carbene gold(I) chloride complexes bearing the N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and N,N'-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene (IPr*) ligands. Their synthesis is achieved through the straightforward and practical weak base approach in a total time of 4-5 h. This straightforward methodology is conducted under air and possesses considerable advantages over alternative routes, such as the use of a sustainable reaction solvent, minimal amounts of a mild base and commercially available or easily obtained starting materials. Additionally, we describe the synthesis of the mononuclear gold(I) hydroxide complex bearing the IPr ligand, using the state-of-the-art method requiring 24 h. Finally, the improved synthesis of the dinuclear gold(I) hydroxide complex [{Au(IPr)}2(μ-OH)][BF4] is described (~3 h). All procedures can be performed by researchers with standard training and lead to high yields (76-99%) of microanalytically pure bench-stable materials.
Collapse
|
35
|
Paderina AV, Koshevoy IO, Grachova EV. Keep it tight: a crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes. Dalton Trans 2021; 50:6003-6033. [PMID: 33913991 DOI: 10.1039/d1dt00749a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copper subgroup metal ions in the +1 oxidation state are classical candidates for aggregation via non-covalent metal-metal interactions, which are supported by a number of bridging ligands. The bridging phosphines, soft donors with a relatively labile coordination to coinage metals, serve as convenient and essential components of the ligand environment that allow for efficient self-assembly of discrete polynuclear aggregates. Simultaneously, accessible and rich modification of the organic spacer of such P-donors has been used to generate many fascinating structures with attractive photoluminescent behavior. In this work we consider the development of di- and polynuclear complexes of M(i) (M = Cu, Ag, Au) and their photophysical properties, focusing on the effect of phosphine bridging ligands, their flexibility and denticity.
Collapse
Affiliation(s)
- Aleksandra V Paderina
- Institute of Chemistry, St Petersburg State University, Universitetskii pr. 26, 198504 St Petersburg, Russia.
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland.
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg State University, Universitetskii pr. 26, 198504 St Petersburg, Russia.
| |
Collapse
|
36
|
Huang YZ, Shi LX, Wang JY, Su HF, Chen ZN. Elaborate Design of Ag 8Au 10 Cluster [2]Catenane Phosphors for High-Efficiency Light-Emitting Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57264-57270. [PMID: 33306350 DOI: 10.1021/acsami.0c17091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, rational design of highly soluble and phosphorescent Ag-Au cluster complexes with exceptional [2]catenane structures is conducted using 1,8-diethynyl-9H-carbazole (H3decz) as a rigid U-shaped ligand with a distinguished hole-transport character. The self-assembly reaction of H3decz, Au+, and Ag+ generated phosphorescent Ag4Au6 cluster 1 (Φem = 0.22 in CH2Cl2) with H2decz- having a free ethynyl (-C≡CH) group. When the four free C≡CH groups in the Ag4Au6 complex 1 are further bound to four (PPh3)Au+ and four (PPh3)Ag+ moieties through M-acetylide linkages, the formation of Ag8Au10 cluster 2 not only eliminates nonradiative ethynyl C-H vibrational deactivation process but also improves dramatically the molecular rigidity so that the phosphorescent efficiency of the Ag8Au10 cluster 2 (Φem = 0.63) is nearly 3 times that of the Ag4Au6 cluster 1. The Ag8Au10 cluster structure is further rigidified using diphsophine Ph2P(CH2)4PPh2 (dppb) in place of PPh3 so that the phosphorescence of the Ag8Au10 cluster 3 (Φem = 0.77) is more efficient than that of 2. Making use of the Ag8Au10 clusters as phosphorescent dopants, high-efficiency solution-processed organic light-emitting diodes (OLEDs) were achieved with current efficiency (CE) and external quantum efficiency (EQE) of 47.2 cd A-1 and 15.7% for complex 2 and 50.5 cd A-1 and 14.9% for complex 3.
Collapse
Affiliation(s)
- Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin-Xi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Hai-Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
37
|
de Aquino A, Caparrós FJ, Aullón G, Ward JS, Rissanen K, Jung Y, Choi H, Lima JC, Rodríguez L. Effect of Gold(I) on the Room-Temperature Phosphorescence of Ethynylphenanthrene. Chemistry 2020; 27:1810-1820. [PMID: 33151003 DOI: 10.1002/chem.202004051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 12/24/2022]
Abstract
The synthesis of two series of gold(I) complexes with the general formulae PR3 -Au-C≡C-phenanthrene (PR3 =PPh3 (1 a/2 a), PMe3 (1 b/2 b), PNaph3 (1 c/2 c)) or (diphos)(Au-C≡C-phenanthrene)2 (diphos=1,1-bis(diphenylphosphino)methane, dppm (1 d/2 d), 1,4-bis(diphenylphosphino)butane, dppb (1 e/2 e)) has been realized. The two series differ in the position of the alkynyl substituent on the phenanthrene chromophore, being at the 9-position (9-ethynylphenanthrene) for the L1 series and at the 2-position (2-ethynylphenanthrene) for the L2 series. The compounds have been fully characterized by 1 H, 31 P NMR, and IR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction resolution in the case of compounds 1 a, 1 e, 2 a, and 2 c. The emissive properties of the uncoordinated ligands and corresponding complexes have been studied in solution and within organic matrixes of different polarity (polymethylmethacrylate and Zeonex). Room-temperature phosphorescence (RTP) is observed for all gold(I) complexes whereas only fluorescence can be detected for the pure organic chromophore. In particular, the L2 series presents better luminescent properties regarding the intensity of emission, quantum yields, and RTP effect. Additionally, although the inclusion of all the compounds in organic matrixes induces an enhancement of the observed RTP owing to the decrease in non-radiative deactivation, only the L2 series completely suppresses the fluorescence, giving rise to pure phosphorescent materials.
Collapse
Affiliation(s)
- Araceli de Aquino
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francisco J Caparrós
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516, Monte de Caparica, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
38
|
|
39
|
Pinto A, Spigolon G, Gavara R, Zonta C, Licini G, Rodríguez L. Tripodal gold(i) polypyridyl complexes and their Cu + and Zn 2+ heterometallic derivatives. Effects on luminescence. Dalton Trans 2020; 49:14613-14625. [PMID: 33057515 DOI: 10.1039/d0dt02564j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three gold(i) tripodal complexes containing the tris(2-pyridylmethyl)amine (TPA) ligand coordinated to Au-PR3 moieties (PR3 = 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane, PTA (1), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane, DAPTA (2) and triphenylphosphane (3)) were prepared together with a cage-like structure containing triphosphane 1,1,1-tris(diphenylphosphinomethyl)ethane (4). The luminescence of these complexes has been studied and they show a red shift upon the formation of heterometallic complexes by reaction with Zn(NO3)2, CuCl and [Cu(CH3CN)4]BF4. The different coordination motifs of the Zn2+ and Cu+ heterometallic species and the resulting changes in the recorded absorption, emission and NMR spectra were analysed and supported by TD-DFT calculations.
Collapse
Affiliation(s)
- Andrea Pinto
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Giulia Spigolon
- Dipartimento di Scienze Chimiche and CIRCC - Unità di Padova, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Raquel Gavara
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche and CIRCC - Unità di Padova, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Giulia Licini
- Dipartimento di Scienze Chimiche and CIRCC - Unità di Padova, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Petrovskii SK, Paderina AV, Sizova AA, Baranov AY, Artem'ev AA, Sizov VV, Grachova EV. Luminescence behaviour of Au(I)-Cu(I) heterobimetallic coordination polymers based on alkynyl-tris(2-pyridyl)phosphine Au(I) complexes. Dalton Trans 2020; 49:13430-13439. [PMID: 32966450 DOI: 10.1039/d0dt02583f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A set of alkynyl-tris(2-pyridyl)phosphine Au(i) complexes was synthesized and characterized. Free coordination functions on the ligand environment periphery, namely 'scorpionate' PPy3 and the C[triple bond, length as m-dash]C bond, allowed these ditopic metalloligands to be selectively linked to 1D coordination polymers by reaction with Cu(i), which used both Cu-(N-PPy3) and Cu-(η2-C[triple bond, length as m-dash]C) coordination modes. Single-crystal and powder XRD, NMR, and XPS techniques were used to characterize the coordination polymers obtained. Heterobimetallic Au(i)-Cu(i) coordination polymers demonstrate triplet photoluminescence which was studied by spectroscopic and computational methods to understand the pathway of energy transfer inside the chain of linked chromophore centres. The intriguing feature of the electronic structure of heterobimetallic supramolecular assemblies is the 'long-distance' electronic transition involving PhC2 and PPy3 ligands located at a distance of more than 1 nm from each other. Thus, the assembly of a heterobimetallic coordination polymer from relatively simple 'building blocks' retains the block-wise nature of the electronic structure, but the photophysical properties of the polymer are fundamentally different from the properties of discrete organometallic components.
Collapse
Affiliation(s)
- Stanislav K Petrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Elistratova J, Faizullin B, Strelnik I, Gerasimova T, Khairullin R, Sapunova A, Voloshina A, Mukhametzyanov T, Musina E, Karasik A, Mustafina A. Impact of oppositely charged shell and cores on interaction of core-shell colloids with differently charged proteins as a route for tuning of the colloids cytotoxicity. Colloids Surf B Biointerfaces 2020; 196:111306. [PMID: 32810768 DOI: 10.1016/j.colsurfb.2020.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
The present work represents interactions between the core-shell nanoparticles and different proteins, exemplified by lysozyme (LSZ), pepsin, bovine serum albumin (BSA), thioredoxin (TRX) and yellow fluorescent protein (YFP). The core-shell morphology derives from the non-covalent deposition of polyethyleneimine (PEI) onto nanoprecipitated luminescent complex (AuCl)2L (L is cyclic PNNP ligand). Analysis of the data obtained by DLS, CD spectroscopy, luminescence derived from both (AuCl)2L and YFP reveal the electrostatically driven interaction of negatively charged proteins with the shell of PEI-(AuCl)2L. The fluorescence of YFP enables to reveal the inclusion of the protein molecules into the shell. The lack of any luminescent response of PEI-(AuCl)2L on TRX conforms its electrostatically driven interactions with the shell which, in turn, excludes a binding of the exposed thiol moieties with (AuCl)2L. The negatively charged surface of pepsin provides the greatest recharging of the PEI-based shell versus the other proteins, which is followed by the enhanced luminescence of (AuCl)2L. The significant effect of PEI-(AuCl)2L on the CD spectra of LSZ followed by the decreased intensity of (AuCl)2L-based luminescence points to specific interaction mode of PEI-(AuCl)2L with LSZ. The flow cytometry and fluorescent microscopy measurements revealed efficient internalization of PEI-(AuCl)2L into the Wi-38 cell samples resulting in the efficient staining of all cell organelles. The concentration dependent cytotoxicity of PEI-(AuCl)2L is detectably enhanced by LSZ, which is correlated with its interaction mode with the nanoparticles.
Collapse
Affiliation(s)
- Julia Elistratova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia.
| | - Bulat Faizullin
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Igor Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Rafil Khairullin
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Timur Mukhametzyanov
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Elvira Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Andrey Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| |
Collapse
|
43
|
Mackenzie HK, Rawe BW, Samedov K, Walsgrove HTG, Uva A, Han Z, Gates DP. A Smart Phosphine–Diyne Polymer Displays “Turn-On” Emission with a High Selectivity for Gold(I/III) Ions. J Am Chem Soc 2020; 142:10319-10324. [DOI: 10.1021/jacs.0c04330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harvey K. Mackenzie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Benjamin W. Rawe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Kerim Samedov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Henry T. G. Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Azalea Uva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zeyu Han
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
44
|
Aguiló E, Dalmases M, Lin M, Lima JC, Gavara R, Figuerola A, Llorca J, Rodríguez L. Facile morphology control of gold(0) structures from aurophilic assemblies. Dalton Trans 2020; 49:4200-4205. [PMID: 32181467 DOI: 10.1039/d0dt00277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different gold microstructures have been synthesized by using supramolecular gold(i) organometallic compounds as templates and Ag nanoparticles as reducing agents. The use of fibers resulting from supramolecular assemblies of neutral gold(i) compounds gives rise to the formation of microrods. The use of supramolecular assemblies from ionic molecules results in spherical or square-based prism gold microstructures, depending on the shape of the supramolecular gold(i) precursor assembly. In addition to temperature and reaction time, solvents exert a strong influence on the formation and morphology of gold structures, as borne out by the example that well-defined star-like morphologies have been obtained in chloroform.
Collapse
Affiliation(s)
- Elisabet Aguiló
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Mariona Dalmases
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mengxi Lin
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, Monte de Caparica, Portugal
| | - Raquel Gavara
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
45
|
Caparrós FJ, Outis M, Jung Y, Choi H, Lima JC, Rodríguez L. Luminescent Tetranuclear Gold(I) Dibenzo[g,p]chrysene Derivatives: Effect of the Environment on Photophysical Properties. Molecules 2020; 25:molecules25040949. [PMID: 32093302 PMCID: PMC7071073 DOI: 10.3390/molecules25040949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
A new 2,7,10,15-tetraethynyldibenzo[g,p]chrysene ligand (1) and two tetranuclear gold(I) derivatives containing PPh3 (3) and PMe3 (4) phosphines were synthesized and characterized by 1H and 31P NMR, IR spectroscopy, and high-resolution mass spectrometry. The compounds were studied in order to analyze the effect of the introduction of gold(I) on the supramolecular aggregation and photophysical properties. Absorption and emission spectra displayed broad bands due to the establishment of π π interactions as an indication of intermolecular contacts and the formation of aggregates. A decrease of the recorded quantum yield (QY) of the gold(I) derivatives was observed compared to the uncomplexed ligand. The introduction of the complexes into poly methyl methacrylate (PMMA) and Zeonex 480R matrixes was analyzed, and an increase of the measured QY of 4 in Zeonex was observed. No phosphorescent emission was detected.
Collapse
Affiliation(s)
- Francisco J. Caparrós
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mani Outis
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal; (M.O.); (J.C.L.)
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Korea; (Y.J.); (H.C.)
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Korea; (Y.J.); (H.C.)
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal; (M.O.); (J.C.L.)
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|