1
|
Beauvois M, Capet F, Nguyen JQ, Ziller JW, Evans WJ, Champouret Y, Visseaux M. Synthesis and characterization of borohydride rare-earth complexes supported by 2-pyridinemethanamido ligands and their application in the ring-opening polymerization of cyclic esters. Dalton Trans 2025; 54:1433-1453. [PMID: 39630264 DOI: 10.1039/d4dt02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The synthesis of 2-pyridinemethanamido borohydride complexes of yttrium and neodymium was achieved through the in situ deprotonation of the protio-ligand 2-pyridinemethanamine C5H3R1N-C(CH3)R2-NH(2,6-iPr2C6H3), denoted as PyAH (with PyAH1: R1 = R2 = H; PyAH2: R1 = CH3, R2 = H; PyAH3: R1 = C(CH3)N-(2,6-iPr2C6H3), R2 = CH3), in the presence of trisborohydride RE(BH4)3(THF)3 (RE = Y and Nd) as a precursor and a base. The isolation of various molecular structures, nine of which were structurally characterized by X-ray diffraction analysis, was achieved and revealed to depend not only on (i) the nature of the 2-pyridinemethanamido ligand and (ii) the rare-earth element but also on (iii) the reaction conditions, notably the type of base used. These include seven mono-substituted species, eventually also comprising the cation derived from the base reagent, such as [(PyA1)Y(BH4)3]2[Mg(THF)6] (1Y), [(PyA1)Nd(BH4)3Mg(PyA1)](THF)4 (1Nd), (PyA1)Nd(BH4)2(THF)2 (1'Nd), [(PyA1)Nd(THF)(BH4)(μ-BH4)]2 (1''Nd), [(PyA2)Nd(BH4)3]2[Mg(THF)6] (3Nd), (PyA2)Nd(BH4)2(THF)2 (3'Nd) and (PyA3)Nd(BH4)2 (4Nd), as well as two bis-substituted complexes (PyA1)2Y(BH4) (2Y) and (PyA1)2Nd(BH4) (2Nd). On the other hand, the unexpected amido/ene-amido derivative [(PyA(EA))Y(BH4)2][Li(THF)4] (5Y) (PyA(EA): R1 = CCH2-N(2,6-iPr2C6H3), R2 = CH3), where the PyAH3 protio-ligand underwent double deprotonation, was recovered from the reaction carried out with nBuLi in the yttrium series. In some cases, the synthesis led to the isolation of borohydride 2-pyridinemethanamido-supported magnesium complexes (PyA2)Mg(BH4)(THF) and (PyA3)Mg(BH4)(THF). In parallel, the PyAH2 pro-ligand could be structurally analyzed, and an unprecedented adduct of the type [KN(SiMe3)2·PyAH1]2 was isolated and characterized by X-ray diffraction analysis. Preliminary investigations of the ring-opening polymerization of L-lactide and ε-caprolactone with some of the complexes synthesized are finally presented, demonstrating moderate to high catalytic activities.
Collapse
Affiliation(s)
- Maxime Beauvois
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Frédéric Capet
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Joseph Q Nguyen
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Yohan Champouret
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Marc Visseaux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| |
Collapse
|
2
|
Chen J, Qu S, Li X, Wei Y, Li Q, Wen Z, Guo Z. Single-Site Catalyst for the Synthesis of Disentangled Ultra-High-Molecular-Weight Polyethylene. Polymers (Basel) 2025; 17:95. [PMID: 39795497 PMCID: PMC11723197 DOI: 10.3390/polym17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 01/13/2025] Open
Abstract
Disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the in situ polymerization of ethylene by single-site catalysts. The effect of single-site catalysts and polymerization conditions on the molecular characteristics is discussed in detail from the perspective of mechanism and DFT calculations. The key factors to low entanglement are revealed, which have instructive implications for the development of new single-site catalytic systems that can generate d-UHMWPE more efficiently and become closer to industrial production. The progress in the preparation for nascent d-UHMWPE with homogeneous and heterogeneous single-site catalysts is systematically reviewed. Rheology and DSC can be used to characterize the degree of entanglement. High-modulus and high-strength biaxial films, tapes, and fibers are obtained by the solid-state processing of these nascent d-UHMWPE.
Collapse
Affiliation(s)
- Jian Chen
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China; (S.Q.); (X.L.); (Y.W.); (Q.L.); (Z.W.)
| | | | | | | | | | | | - Zifang Guo
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China; (S.Q.); (X.L.); (Y.W.); (Q.L.); (Z.W.)
| |
Collapse
|
3
|
Gao Z, Tian J, Han Y, Liu S, Li Z. Zirconium and Hafnium Complexes Bearing Tridentate ONN-Ligands: Extremely High Activity toward Ethylene (Co)Polymerization. Inorg Chem 2024; 63:18137-18145. [PMID: 39287224 DOI: 10.1021/acs.inorgchem.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The pursuit of high-performance catalysts in the realm of polyolefins is a constant goal. In this study, a range of zirconium (1-ZrCl3, 2-ZrCl3, 3-ZrCl4, 12-Zr) and hafnium (1-HfCl3, 12-Hf) complexes featuring phenoxy-imine-amine ONN-ligands (2,6-R2-C6H3-NH-C6H4-N═CH-C6H2-3,5-tBu2-OH; 1-L: R = H; 2-L: R = F; 3-L: R = iPr) were synthesized and characterized using NMR spectroscopy, as well as single-crystal X-ray diffraction for 2-ZrCl3, 3-ZrCl4, and 12-Zr. These Zr and Hf complexes exhibited remarkable efficiency for ethylene homopolymerization and copolymerization with 1-octene when paired with MAO as the cocatalyst. Notably, the Zr complexes outperformed the Hf complexes with the same ligand, underscoring the substantial impact of the metal center on catalytic performance. The substituents and coordination modes of the ligands also exerted significant influence on the catalytic behavior, affecting both the activity and properties of the resulting polymers. Particularly noteworthy was the exceptional activity of 1-ZrCl3, achieving activity as high as 6.30 × 108 g(PE)·mol-1(Zr)·h-1 for ethylene homopolymerization and generating bi- or multimodal distribution polyethylene. The activation of 1-ZrCl3 by 5 or 20 equiv of d-MAO afforded a dinuclear Zr complex bridged by two chlorides (μ-Cl2-(1-ZrCl2)2), which was analyzed and confirmed by in situ 1H NMR spectroscopy and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhihao Gao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingxia Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Li Y, Bao J, Liu Q, Tse MK, Chan MCW. Bis-[C(sp 3)-chelating] Ti 2 catalysts supported by arylene-1,4-diyl-2,3-X 2 bridges for olefin copolymerisation: X substituents impose conformational cooperative effects. Dalton Trans 2024; 53:14391-14398. [PMID: 39136437 DOI: 10.1039/d4dt02006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The synthesis, spectroscopic characterisation and catalytic olefin polymerisation behaviour of a class of binuclear titanium bis(benzyl) complexes bearing bis-(pyridine-2-phenolate-6-methine)-[μ-(arylene-1,4-diyl-2,3-X2)] ligands [X2 = -C4H4- (1), F2 (2), H2 (3)], and mononuclear analogues, are described. These bimetallic catalyst frameworks are designed to exhibit a degree of conformational flexibility, which is regulated by steric effects and crucially permits tuning of intermetallic distances and geometry, yet their shape-persistent nature can also confer favourable entropic terms. Complexes 1-3 are characterised as two diastereomers [meso (RS) and rac (RR,SS)] in ratios of 1.32, 1.18 and 1.13 respectively, according to 1H NMR spectroscopy. In contrast to 3, [1H,1H]-ROESY experiments for 1 and 2 revealed that the X2 substituents can impose preferred conformations with syn orientations of Ti2 centres and benzyl groups, thus implying that the activated catalysts would present binding sites with the same direction of access. For ethylene-(1-octene) copolymerisation reactions, in conjunction with [Ph3C][B(C6F5)4], catalyst 1 displayed superior efficiencies and produced polymers with higher Mw values and enhanced comonomer incorporation ratios (up to 41%), when compared with the mononuclear 5m (22%). These results are indicative of enhanced comonomer enchainment and cooperative reactivity by the Ti2 sites.
Collapse
Affiliation(s)
- Yufang Li
- Department of Chemistry and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Junhui Bao
- Department of Chemistry and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Qian Liu
- Department of Chemistry and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Man-Kit Tse
- Department of Chemistry and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Michael C W Chan
- Department of Chemistry and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Wen Z, Wu C, Chen J, Qu S, Li X, Wang W. Homogeneous Non-Metallocene Group 4 Metals Ligated with [N,N] Bidentate Ligand(s) for Olefin Polymerization. Polymers (Basel) 2024; 16:406. [PMID: 38337295 DOI: 10.3390/polym16030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The development of catalysts has significantly advanced the progress of polyolefin materials. In particular, group 4 (Ti, Zr, Hf) non-metallocene catalysts ligated with [N,N] bidentate ligand(s) have garnered increasing attention in the field of olefin polymerization due to their structurally stability and exceptional polymerization behaviors. Ligands containing nitrogen donors are diverse and at the core of many highly active catalysts. They mainly include amidine, guanidinato, diamine, and various N-heterocyclic ligands, which can be used to obtain a series of new polyolefin materials, such as ultrahigh molecular weight polyethylene (UHWMPE), olefin copolymers (ethylene/norbornene and ethylene/α-olefin) with high incorporations, and high isotactic or syndiotactic polypropylene after coordination with group 4 metals and activation by cocatalysts. Herein, we focus on the advancements and applications of this field over the past two decades, and introduce the catalyst precursors with [N,N] ligand(s), involving the effects of ligand structure, cocatalyst selection, and polymerization conditions on the catalytic activity and polymer properties.
Collapse
Affiliation(s)
- Zhao Wen
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Changjiang Wu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Jian Chen
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Shuzhang Qu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Xinwei Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| | - Wei Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| |
Collapse
|
6
|
Apilardmongkol P, Ratanasak M, Hasegawa JY, Parasuk V. DFT insight into metals and ligands substitution effects on reactivity of phenoxy-imine catalysts for ethylene polymerization. J Mol Graph Model 2023; 125:108586. [PMID: 37567049 DOI: 10.1016/j.jmgm.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
The reaction mechanism of ethylene (ET) polymerization catalyzed by the phenoxy-imine (FI) ligands using DFT calculations was studied. Among five possible isomers, isomer A which has an octahedral geometry and a (cis-N/trans-O/cis-Cl) arrangement is the most stable pre-reaction Ti-FI dichloride complex. The isomer A can be activated by MAO to form the active catalyst and the active form was used for the study of the mechanism for Ti-FI. The second ethylene insertion was found to be the rate-determining step of the catalyzed ethylene polymerization. To examine the effect of group IVB transition metals (M = Ti, Zr, Hf) substitutions, calculated activation energies at the rate-determining step (EaRDS) were compared, where values of EaRDS of Zr < Hf < Ti agree with experiments. Moreover, we examined the effect of substitution on (O, X) ligands of the Ti-phenoxy-imine (Ti-1) based catalyst. The results revealed that EaRDS of (O, N) > (O, O) > (O, P) > O, S). Hence, the (O, S) ligand has the highest potential to improve the catalytic activity of the Ti-FI catalyst. We also found the activation energy to be related to the Ti-X distance. In addition, a novel Ni-based FI catalyst was investigated. The results indicated that the nickel (II) complex based on the phenoxy-imine (O, N) ligand in the square-planar geometry is more active than in the octahedral geometry. This work provides fundamental insights into the reaction mechanism of M - FI catalysts which can be used for the design and development of M - FI catalysts for ET polymerization.
Collapse
Affiliation(s)
- Pavee Apilardmongkol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Vudhichai Parasuk
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Videa H, Martínez-Martínez AJ. Revealing unbound β-diketiminate anions: structural dynamics from caesium complexes. Dalton Trans 2023; 52:13058-13062. [PMID: 37335258 DOI: 10.1039/d3dt01592k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This study reports the first structural elucidation of β-diketiminate anions (BDI-), known for strong coordination, in their unbound form within caesium complexes. β-Diketiminate caesium salts (BDICs) were synthesised, and upon the addition of Lewis donor ligands, free BDI- anions and donor-solvated Cs+ cations were observed. Notably, the liberated BDI- anions exhibited an unprecedented dynamic cisoid-transoid exchange in solution.
Collapse
Affiliation(s)
- Hellen Videa
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva ES-21007, Spain.
| | - Antonio J Martínez-Martínez
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva ES-21007, Spain.
| |
Collapse
|
8
|
Zhu B, Liu K, Luo L, Zhang Z, Xiao Y, Sun M, Jie S, Wang WJ, Hu J, Shi S, Wang Q, Li BG, Liu P. Covalent Organic Framework-Supported Metallocene for Ethylene Polymerization. Chemistry 2023; 29:e202300913. [PMID: 37341127 DOI: 10.1002/chem.202300913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
The loading of homogeneous catalysts with support can dramatically improve their performance in olefin polymerization. However, the challenge lies in the development of supported catalysts with well-defined pore structures and good compatibility to achieve high catalytic activity and product performance. Herein, we report the use of an emergent class of porous material-covalent organic framework material (COF) as a carrier to support metallocene catalyst-Cp2 ZrCl2 for ethylene polymerization. The COF-supported catalyst demonstrates a higher catalytic activity of 31.1×106 g mol-1 h-1 at 140 °C, compared with 11.2×106 g mol-1 h-1 for the homogenous one. The resulting polyethylene (PE) products possess higher weight-average molecular weight (Mw ) and narrower molecular weight distribution (Ð) after COF supporting, that is, Mw increases from 160 to 308 kDa and Ð drops from 3.3 to 2.2. The melting point (Tm ) is also increased by up to 5.2 °C. Moreover, the PE product possesses a characteristic filamentous microstructure and demonstrates an increased tensile strength from 19.0 to 30.7 MPa and elongation at break from 350 to 1400 % after catalyst loading. We believe that the use of COF carriers will facilitate the future development of supported catalysts for highly efficient olefin polymerization and high-performance polyolefins.
Collapse
Affiliation(s)
- Bangban Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kan Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqiong Luo
- National-Certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd., Guangzhou, 510663, P. R. China
| | - Ziyang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Yangke Xiao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghao Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Jijiang Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengbin Shi
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Qingyue Wang
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| |
Collapse
|
9
|
Fang XY, Qin L, Liu J, Shi H, Sun XL, Kuang X, Gao Y, Tang Y. Synthesis and characterization of oxazoline-amine zirconium complexes for ethylene homo- and co-polymerization catalysis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Xing Y, Xu L, Liu S, Li Z. Dinuclear Group 4 Metal Complexes Bearing Anthracene-Bridged Bifunctional Amido-Ether Ligands: Remarkable Metal Effect and Cooperativity toward Ethylene/1-Octene Copolymerization. Inorg Chem 2023; 62:2859-2869. [PMID: 36719090 DOI: 10.1021/acs.inorgchem.2c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two types of bifunctional amido-ether ligands (syn-L and anti-L) with the rigid anthracene skeleton were designed to support dinuclear group 4 metal complexes. All organic ligands and organometallic complexes (syn-M2 and anti-M2; M = Hf, Zr, and Ti) were fully characterized by 1H and 13C NMR spectroscopies and elemental analyses. The anti-Hf2 complex showed two confirmations at room temperature with C2-symmetry or S2-symmetry that can inter-exchange, as indicated by VT NMR, while only a C2-symmetric isomer was observed for syn-Hf2 complex at room temperature. However, for Zr and Ti analogues, both syn and anti complexes exhibited only one conformation at room temperature. The molecular structures of complexes syn-Hf2, anti-Hf2, and syn-Ti2 in the solid state were further determined by single-crystal X-ray diffraction, revealing the distances between two metal centers in syn-M2 from 7.138 Å (syn-Ti2) to 7.321 Å (syn-Hf2) but a much farther separation in anti-M2 (8.807 Å in C2-symmetric anti-Hf2). The mononuclear complex (2-CH3O-C6H4-N-C14H9)Zr(NMe2)3 (mono-Zr1) was also prepared for control experiments. In the presence of alkyl aluminum (AlEt3) as the alkylating agent and trityl borate ([Ph3C][B(C6F5)4]) as the co-catalyst, all metal complexes were tested for copolymerization of ethylene with 1-octene at high temperature (130 °C). The preliminary polymerization results revealed that the activity was highly dependent upon the nature of metal centers, and syn-Zr2 showed the highest activity of 9600 kg(PE)·mol-1 (Zr)·h-1, which was about 17- and 2.2-fold higher than those of syn-Hf2 and syn-Ti2, respectively. Benefitting from both steric proximity and electronical interaction of two metal centers, syn-Zr2 exhibited significant cooperativity in comparison to anti-Zr2 and mono-Zr1, with regard to activity and molecular weight and 1-octene incorporation of resultant copolymers.
Collapse
Affiliation(s)
- Yanhong Xing
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingling Xu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Xue M, Luo Y, Ren S, Li T, You Q, Xie G. Phenyl-bridged bis-salicylaldiminato binuclear titanium complexes for ethylene (co)polymerization. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Okabe M, Nomura K. Propylene/Cyclic Olefin Copolymers with Cyclopentene, Cyclohexene, Cyclooctene, Tricyclo[6.2.1.0(2,7)]undeca-4-ene, and Tetracyclododecene: The Synthesis and Effect of Cyclic Structure on Thermal Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masaki Okabe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
13
|
Hand AT, Lamb AC, Richmond MG, Wang X, Steren CA, Xue ZL. Syntheses of Group 5 Amide Amidinates and Their Reactions with Water: Different Reactivities of Nb(V) and Ta(V) Complexes. Inorg Chem 2022; 61:19075-19087. [DOI: 10.1021/acs.inorgchem.2c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Adam T. Hand
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam C. Lamb
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael G. Richmond
- Department of Chemistry, The University of North Texas, Denton, Texas 76203, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Carlos A. Steren
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zi-Ling Xue
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Chen Y, Zhou S, Yang W, Liu S. Hafnium and Zirconium Complexes Bearing SNN-Ligands Enhancing Catalytic Performances toward Ethylene/1-Octene Copolymerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yanjun Chen
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Shengmei Zhou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Weiqun Yang
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Shaofeng Liu
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
15
|
Zhao Y, Li H, Xin S, Li H, Luo Y, He S. DFT Studies on the Early-Transition-Metal-Catalyzed Polymerization of Polar Monomers with a Methylene Spacer between Vinyl and Functional Groups. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huashu Li
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shixuan Xin
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Hao Li
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shengbao He
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
16
|
Transition Metal-(μ-Cl)-Aluminum Bonding in α-Olefin and Diene Chemistry. Molecules 2022; 27:molecules27217164. [PMID: 36363991 PMCID: PMC9654437 DOI: 10.3390/molecules27217164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M−(μ-Cl)−Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M−(μ-Cl)−Al bonding in Ziegler−Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M−(μ-Cl)−Al species into catalytic cycles. In the present review, we have compiled data on the formation of M−(μ-Cl)−Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler−Natta processes and beyond.
Collapse
|
17
|
Udomsasporn K, Chumsaeng P, Phomphrai K. Enhancement of Ethylene and Ethylene/1-Hexene (Co)polymerization Activities by Titanium(IV) and Zirconium(IV) Complexes Bearing Constrained Hydroxyindanone-Imine Ligands. Inorg Chem 2022; 61:16992-16996. [PMID: 36261078 DOI: 10.1021/acs.inorgchem.2c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of catalysts for ethylene and ethylene/1-hexene (co)polymerizations bearing constrained hydroxyindanone-imine ligands was developed for titanium(IV) and zirconium(IV) metals with variations of steric and electronic contributions on the ligands. X-ray crystal structures revealed significantly higher open space for the constrained titanium and zirconium complexes, compared to the conventional FI counterparts. Upon activation with MAO, significantly higher ethylene polymerization activities (up to 379.4 kg-PE/mmol-M h for Zr) and notably almost doubled 1-hexene content in the ethylene/1-hexene copolymerizations were observed as a result of the constrained five-membered ring backbone.
Collapse
Affiliation(s)
- Kwanchanok Udomsasporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan, Rayong 21210, Thailand
| | - Phongnarin Chumsaeng
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan, Rayong 21210, Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan, Rayong 21210, Thailand
| |
Collapse
|
18
|
Ch. Gagieva S, Kurmaev DA, Magomedov KF, Tuskaev VA, Denisov GL, Khakina EA, Zakharchenko EN, Golubev EK, Evseeva MD, Dzevakov PB, Bulychev BM. Cationic [TiCl6]+2 and anionic [TiCl6-xLx]-(2-x) titanium complexes with crown ether as pre-catalyst for ethylene polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Tian J, Feng W, Liu S, Li Z. Titanium Complexes Bearing
NNO‐Tridentate
Ligands: Highly Active Olefin Polymerization Catalysts with Great Control on Molecular Weight and Distribution. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenzheng Feng
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
20
|
Suzuki N, Yoneyama S, Sato K, Shiba K, Nakayama T, Uematsu Y, Sakurai K. Synthesis of O,N,O-P-multidentate ligands and their heterobimetallic complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Jeong AR, Nayab S, Kim E, Yeo H, Lee H. Norbornene and methyl methacrylate polymerizations catalyzed by palladium(II) complexes bearing aminomethylpyridine and aminomethylquinoline derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Robinson TP, Georges M, Turner ZR, Buffet JC, O’Hare D. Zirconium Permethylpentalene Amidinate Complexes: Characterization, Bonding, and Olefin Polymerization Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas P. Robinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Maureen Georges
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Zoë R. Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Jean-Charles Buffet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Dermot O’Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
23
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
24
|
McDaniel T, Smith NE, Cueny E, Landis CR. Dual-Chain Polymerization at an Early Transition-Metal Single-Site Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tanner McDaniel
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas E. Smith
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric Cueny
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Clark R. Landis
- The Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Kitphaitun S, Fujimoto T, Ochi Y, Nomura K. Effect of Borate Cocatalysts toward Activity and Comonomer Incorporation in Ethylene Copolymerization by Half-Titanocene Catalysts in Methylcyclohexane. ACS ORGANIC & INORGANIC AU 2022; 2:386-391. [PMID: 36855669 PMCID: PMC9955119 DOI: 10.1021/acsorginorgau.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Ethylene copolymerizations with 2-methyl-1-pentene, 1-dodecene (DD), vinylcyclohexane (VCH), [Me2Si(C5Me4)(N t Bu)]TiCl2 (1), Cp*TiMe2(O-2,6- i Pr2-4-RC6H2) [R = H (2), SiEt3 (3)]-borate, and [A(H)]+[BAr4]- [Ar = C6F5; A(H)+ = N+(H)Me(n-C18H37)2, N+(H)(CH2CF3)(n-C18H37)2, HO+(n-C14H29)2·O(n-C14H29)2, HO+(n-C16H33)2·O(n-C16H33)2; Ar = C10F7, A(H)+ = HO+(n-C14H29)2·O(n-C14H29)2 (B5), N+(H)(CH2CF3)(n-C18H37)2] catalyst systems conducted in methylcyclohexane (MCH) exhibited better comonomer incorporation than those conducted in toluene (in the presence of methylaluminoxane (MAO) or borate cocatalysts). The activity was affected by the borate cocatalyst and 1,3-B5 catalyst systems in MCH and showed the highest activity in the ethylene copolymerizations with VCH and DD.
Collapse
Affiliation(s)
- Suphitchaya Kitphaitun
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji,
Tokyo 192-0376, Japan
| | - Takuya Fujimoto
- AGC
Inc., Yokohama Technical Center, 1-1, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yosuke Ochi
- AGC
Inc., Yokohama Technical Center, 1-1, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kotohiro Nomura
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji,
Tokyo 192-0376, Japan,
| |
Collapse
|
26
|
Nifant'ev IE, Vinogradov AA, Vinogradov AA, Sadrtdinova GI, Komarov PD, Minyaev ME, Ilyin SO, Kiselev AV, Samurganova TI, Ivchenko PV. Synthesis, molecular structure and catalytic performance of heterocycle-fused cyclopentadienyl-amido CGC of Ti (IV) in ethylene (co)polymerization: The formation and precision rheometry of long-chain branched polyethylenes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Synthesis and Crystal Structures of Three Thioether Functionalized Formamidines and Their Corresponding Lithium Formamidinates. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Zhang M, Feng Y, Lou L, Zhang H, Wang J, Yang Y. Flow Toolkit for Measuring Reaction Enthalpy and Application to Highly Exothermic Synthesis of Alkylaluminoxanes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengbo Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yirong Feng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Linjin Lou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haomiao Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jingdai Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yongrong Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
29
|
Li F, He J, Song T, Gao W, Mu X, Mu Y. Zirconium Complexes with Bulkier Amine Bis(phenolate) Ligands and Their Catalytic Properties for Ethylene (Co)polymerization. Inorg Chem 2022; 61:6469-6479. [PMID: 35436094 DOI: 10.1021/acs.inorgchem.2c00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of new zirconium complexes bearing bulkier amine bis(phenolate) tetradentate ligands, Me2NCH2CH2N{CH2(2-O-3-R-5-tBu-C6H2)}2ZrCl2 [R = CPhMe2 (1); CMePh2 (2); CPh3 (3); Ph (4); 3,5-Me2C6H3 (5); 3,5-tBu2C6H3 (6); 4-tBuC6H4 (7)], were synthesized and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and elemental analyses. The molecular structures of complexes 1 and 3 were determined by single-crystal X-ray diffraction analysis. The X-ray crystallography analysis reveals that these complexes display a slightly distorted octahedral geometry around their metal centers. Upon activation with methylaluminoxane (MAO), dry-MAO, MAO/butylated hydroxytoluene (BHT), or AliBu3/CPh3B(C6F5)4, these zirconium complexes exhibit high catalytic activity for ethylene polymerization [up to 1.07 × 107 g PE (mol Zr)-1 h-1] and ethylene/1-hexene copolymerization [up to 2.78 × 107 g polymer (mol Zr)-1 h-1], affording (co)polymers with moderate to high molecular weights and good comonomer incorporations. The zirconium complexes with bulkier R groups show higher catalytic activities and longer lifetimes and produce polymers with higher molecular weights, while the zirconium complexes with aryls as R groups demonstrate relatively good comonomer incorporation ability for the copolymerization reactions. These catalytic systems also show moderate catalytic activities for the polymerization reactions of propylene, 1-hexene, and 1-decene. Upon activation with MAO, the zirconium complexes also show moderate catalytic activities for the copolymerization reaction of ethylene with 3-buten-1-ol (treated with 1 equiv of AliBu3), affording copolymers with the incorporation of 3-buten-1-ol up to 1.05%.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jianghao He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Tingting Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoyue Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
30
|
Investigating the Effects of Para-methoxy Substitution in Sterically Enhanced Unsymmetrical Bis(arylimino)pyridine-cobalt Ethylene Polymerization Catalysts. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2670-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Zhang S, Yuan D, Chen F, Zhu J, Guo W, Zhang Y, Guo J, Huang Q. Functionalized amphiphilic polyethylene via direct copolymerizations of ethylene with α-olefin containing amino functionalization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2022494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaomeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Dingkun Yuan
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Feng Chen
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Junqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wensi Guo
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jiangping Guo
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qigu Huang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, The College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
32
|
Tian J, Zhang X, Liu S, Li Z. Chromium Complexes Supported by NNO-Tridentate Ligands: An Unprecedent Activity with the Low Requirement of MAO. Polym Chem 2022. [DOI: 10.1039/d2py00125j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of metal catalysts with high activity and thermal stability but low requirement of MAO as cocatalyst is highly desired for polyolefin industrial application. In this contribution, a series...
Collapse
|
33
|
Rufanov KA, Titov IY, Lemenovskii DA, Krut’ko DP, Churakov AV. Novel approach for the synthesis of chiral organometallic complexes – first series of lithium 2-amino-indenide ligands bearing pendant donor groups and a unique helical bent-zirconocene. NEW J CHEM 2022. [DOI: 10.1039/d1nj05094j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct metallation of chiral 2-amino-indenyl ligands leads to a lithiated species linked in infinite chains and a unique helical bent zirconocene.
Collapse
Affiliation(s)
- Konstantin A. Rufanov
- Institute of Living Systems, I. Kant Baltic Federal University, Kaliningrad 236040, Russian Federation
| | - Ilya Yu. Titov
- N.D. Zelinsky-Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
- HSE University, Myasnitskaya ulitsa, 20, Moscow 101000, Russian Federation
| | - Dmitry A. Lemenovskii
- Department of Chemistry, M.V. Lomonosov State University of Moscow, Moscow 119991, Russian Federation
| | - Dmitry P. Krut’ko
- Department of Chemistry, M.V. Lomonosov State University of Moscow, Moscow 119991, Russian Federation
| | - Andrei V. Churakov
- N.S. Kurnakov-Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prospect., 31, Moscow 119991, Russian Federation
| |
Collapse
|
34
|
Carter CC, Cundari TR, Rodriguez G. Olefin Oligomerization by Zirconium Boratabenzene Catalysts. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Huo Y, Hu X, Wang J, Hu H, Shi X. Amido-trihydroquinoline ligated rare-earth metal complexes for polymerization of isoprene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00707j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In combination with a borate, the amido-trihydroquinoline ligated rare-earth metal complexes (Ln = Y, Lu) showed moderate catalytic activities for isoprene polymerization to generate 1,4-enriched polyisoprenes.
Collapse
Affiliation(s)
- Yanchen Huo
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Xiang Hu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Jixing Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Hongfan Hu
- Petrochemical Research Institute, PetroChina, Block A42, Science Base Petro China, Shahe Town, Changping District, Beijing 102206, China
| | - Xiaochao Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
36
|
Copolymerization of Ethylene with Selected Vinyl Monomers Catalyzed by Group 4 Metal and Vanadium Complexes with Multidentate Ligands: A Short Review. Polymers (Basel) 2021; 13:polym13244456. [PMID: 34961007 PMCID: PMC8708287 DOI: 10.3390/polym13244456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
This paper gives a short overview of homogeneous post-metallocene catalysts based on group 4 metal and vanadium complexes bearing multidentate ligands. It summarizes the catalytic behavior of those catalysts in copolymerization of ethylene with 1-olefins, with styrenic monomers and with α,ω-alkenols. The review is focused on finding correlations between the structure of a complex, its catalyst activity and comonomer incorporation ability, as well as the microstructure of the copolymer chains.
Collapse
|
37
|
Kumar S, Dholakiya BZ, Jangir R. Role of organometallic complexes in olefin polymerization: a review report. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Synthesis of mono- and bis- benzimidazolin-2-iminato titanium complexes and their catalytic performances in ethylene homo- and co- polymerizations. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Pan D, Fan K, Zhang S, Wu Y. Syndiospecific Polymerization of Styrene Catalyzed by Half‐titanocenes Containing Monodentate Anionic Nitrogen Ligands. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Dan Pan
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ke‐Xin Fan
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shu Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yi‐Xian Wu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
40
|
Naturally Occurring Oxazole Structural Units as Ligands of Vanadium Catalysts for Ethylene-Norbornene (Co)polymerization. Catalysts 2021. [DOI: 10.3390/catal11080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
1,3-Oxazole and 4,5-dihydro-1,3-oxazole are common structural motifs in naturally occurring peptides. A series of vanadium complexes were synthesized using VCl3(THF)3 and methyl substituted (4,5-dihydro-1,3-oxazol-2-yl)-1,3-oxazoles as ligands and analyzed using NMR and MS methods. The complexes were found to be active catalysts both in ethylene polymerization and ethylene-norbornene copolymerization. The position of methyl substituent in the ligand has considerable impact on the performance of (co)polymerization reaction, as well as on the microstructure, and thus physical properties of the obtained copolymers.
Collapse
|
41
|
Duan X, Zhang X, Liu T, Bai S, Tong H, Chao J, Sun W. Structural diversity in substituted aminosilyl‐aminopyridinate metal (Zr or Fe) complexes: Synthesis, structures, and ethylene polymerization. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xin‐E Duan
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Xiao‐Xia Zhang
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Tian Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Sheng‐Di Bai
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Hongbo Tong
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Jian‐Bin Chao
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
42
|
Zanchin G, Leone G. Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Han B, Liu Y, Feng C, Liu S, Li Z. Development of Group 4 Metal Complexes Bearing Fused-Ring Amido-Trihydroquinoline Ligands with Improved High-Temperature Catalytic Performance toward Olefin (Co)polymerization. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Binghao Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Yongxin Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Chunyu Feng
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| |
Collapse
|
44
|
Wang YC, Cheng PY, Zhang ZQ, Fan KX, Lu RQ, Zhang S, Wu YX. Highly efficient terpolymerizations of ethylene/propylene/ENB with a half-titanocene catalytic system. Polym Chem 2021. [DOI: 10.1039/d1py01140e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient terpolymerization of ethylene, propylene and 5-ethylidene-2-norbornene using a half-titanocene containing iminoimidazolidine with methylaluminoxane/Al(iBu)3/2,6-ditertbutyl-4-methyl-phenol was achieved.
Collapse
Affiliation(s)
- Yi-Cong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pei-Yi Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke-Xin Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui-Qi Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi-Xian Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
45
|
Qin Y, Li T, Chen X, Li J, Meng X, You Q, Xie G. Asymmetric bis-salicylaldiminato binuclear titanium complexes for ethylene polymerization and copolymerization. NEW J CHEM 2021. [DOI: 10.1039/d1nj01049b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric binuclear Ti complexes were synthesized, which exhibited excellent activity for ethylene homopolymerization and copolymerization with 1-hexene or norbornene and high comonomer insertion efficiency under MMAO activation.
Collapse
Affiliation(s)
- Yawen Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Tingcheng Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Xiong Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Jian Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Xiang Meng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Qingliang You
- Key Laboratory of Optoelectronic Chemical Materials and Devices
- Ministry of Education
- School of Chemical and Environmental Engineering
- Jianghan University
- Wuhan 430056
| | - Guangyong Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
- Hubei Engineering Technology Research Centre of Energy Polymer Materials
| |
Collapse
|
46
|
Yuan SF, Fan Z, Yan Y, Ma Y, Han M, Liang T, Sun WH. Achieving polydispersive HDPE by N, N, N-Co precatalysts appended with N-2,4-bis(di(4-methoxyphenyl)methyl)-6-methylphenyl. RSC Adv 2020; 10:43400-43411. [PMID: 35519690 PMCID: PMC9058363 DOI: 10.1039/d0ra09333e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023] Open
Abstract
A family of unsymmetrical 2-(2,4-bis(di(4-methoxyphenyl)methyl)-6-MeC6H2N)-6-(1-(arylimino)ethyl)pyridine-cobalt dichloride complexes has been synthesized and characterized by NMR spectroscopy, FT-IR spectroscopy and elemental analysis as well as single crystal X-ray diffraction for Co2 and Co4. Activated with either MAO or MMAO, all the cobalt precatalysts displayed high activities toward ethylene polymerization and produced highly linear polyethylenes with high molecular weights as well as wide polydispersities; for example, the performance using Co1/MAO at 50 °C reached 9.17 × 106 g PE (mol of Co)−1 h−1 with the production polyethylene of molecular weight as high as Mw = 3.14 × 105 g mol−1, Tm = 134.3 °C besides its wide polydispersity of Mw/Mn of 54.6. Besides the terminal vinyl group of the resultant polyethylenes, it is rare for a late-transition metal catalyst to achieve highly linear polyethylenes with not only wide polydispersity but also high molecular weights, being similar to high-density polyethylenes produced using Phillips catalyst. Introducing a practical application of N,N,N-Co precatalysts for highly linear polyethylenes with wide polydispersity and high molecular weights, targeting HDPE using Phillips catalyst.![]()
Collapse
Affiliation(s)
- Shi-Fang Yuan
- Institute of Applied Chemistry, Shanxi University Taiyuan 030006 People's Republic of China
| | - Zhe Fan
- Institute of Applied Chemistry, Shanxi University Taiyuan 030006 People's Republic of China .,Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China +86-10-62618239 +86-10-62557955
| | - Yi Yan
- Institute of Applied Chemistry, Shanxi University Taiyuan 030006 People's Republic of China .,Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China +86-10-62618239 +86-10-62557955
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China +86-10-62618239 +86-10-62557955
| | - Mingyang Han
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China +86-10-62618239 +86-10-62557955
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China +86-10-62618239 +86-10-62557955
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China +86-10-62618239 +86-10-62557955.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
47
|
Tuskaev VA, Gagieva SC, Kurmaev DA, Melnikova EK, Zubkevich SV, Buzin MI, Nikiforova GG, Vasil'ev VG, Saracheno D, Bogdanov VS, Privalov VI, Bulychev BM. Olefin polymerization behavior of titanium(IV) alkoxo complexes with fluorinated diolate ligands: The impact of the chelate ring size and the nature of organoaluminum compounds. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vladislav A. Tuskaev
- M. V. Lomonosov Moscow State University Department of Chemistry 1 Leninskie Gory Moscow 119992 Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Svetlana Ch. Gagieva
- M. V. Lomonosov Moscow State University Department of Chemistry 1 Leninskie Gory Moscow 119992 Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Dmitry A. Kurmaev
- M. V. Lomonosov Moscow State University Department of Chemistry 1 Leninskie Gory Moscow 119992 Russian Federation
| | - Elizaveta K. Melnikova
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Sergey V. Zubkevich
- M. V. Lomonosov Moscow State University Department of Chemistry 1 Leninskie Gory Moscow 119992 Russian Federation
| | - Mikhail I. Buzin
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Galina G. Nikiforova
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Viktor G. Vasil'ev
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Daniele Saracheno
- Higher College of Chemistry of Russia Dmitry Mendeleev University of Chemical Technology of Russia Miusskaya sq. 9 Moscow 125047 Russia
| | - Vyacheslav S. Bogdanov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 ul. Vavilova Moscow 119991 Russian Federation
| | - Viktor I. Privalov
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences 31 Leninsky Prospect Moscow 119991 Russian Federation
| | - Boris M. Bulychev
- M. V. Lomonosov Moscow State University Department of Chemistry 1 Leninskie Gory Moscow 119992 Russian Federation
| |
Collapse
|
48
|
Zhou Y, He X, Liu B. Kinetics and Mechanism Comparison between Cr/Ti‐Based Bimetallic and Ti‐Based Monometallic Catalysts for Ethylene Polymerization. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.202000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Zhou
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Xuelian He
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Boping Liu
- College of Materials and Energy South China Agricultural University Wushan Road 483 Guangzhou 510642 China
| |
Collapse
|
49
|
Wada T, Funako T, Chammingkwan P, Thakur A, Matta A, Terano M, Taniike T. Structure-performance relationship of Mg(OEt)2-based Ziegler-Natta catalysts. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Liu S, Xing Y, Zheng Q, Jia Y, Li Z. Synthesis of Anthracene-Bridged Dinuclear Phenoxyiminato Organotitanium Catalysts with Enhanced Activity, Thermal Stability, and Comonomer Incorporation Ability toward Ethylene (Co)polymerization. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Yanhong Xing
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Quande Zheng
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Yutong Jia
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| |
Collapse
|