1
|
Filippin AN, Campos-Lendinez Á, Delgado-Alvarez J, Moreno-Martinez G, Castillo-Seoane J, Rico VJ, Godinho VF, Barranco Á, Sanchez-Valencia JR, Borras A. Facile integration of single-crystalline phthalocyanine nanowires and nanotrees as photo-enhanced conductometric sensors. NANOSCALE 2025; 17:7945-7956. [PMID: 40066687 PMCID: PMC11894603 DOI: 10.1039/d4nr04761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
This article presents a reproducible and affordable methodology for fabricating organic nanowires (ONWs) and nanotrees (ONTs) as light-enhanced conductometric O2 sensors. This protocol is based on a solventless procedure for the formation of high-density arrays of nanowires and nanotrees on interdigitated electrodes. The synthesis combines physical vapour deposition for the self-assembled growth of free-phthalocyanine nanowires and soft plasma etching to prompt the nucleation sites on the as-grown ONWs to allow for the formation of nanotrees. Electrical conductivity in such low-dimensional electrodes was analysed in the context of density, length, and interconnection between nanowires and nanotrees. Furthermore, the electrodes were immersed in water to improve the nanowires' connectivity. The response of the nanotrees as conductometric O2 sensors was tested at different temperatures (from room temperature to 100 °C), demonstrating that the higher surface area exposed by the nanotrees, in comparison with that of their polycrystalline thin film counterparts, effectively enhances the doping effect of oxygen and increases the response of the ONT-based sensor. Both organic nanowires and nanotrees were used as model systems to study the augmented response of the sensors provided by illumination with white or monochromatic light to organic semiconducting systems. Interestingly, the otherwise negligible sensor response at room temperature can be activated (On/Off) under LED illumination, and no dependency on the illumination wavelength in the visible range was observed. Thus, under low-power LED illumination with white light, we show a response to O2 of 16% and 37% in resistivity for organic nanotrees at room temperature and 100 °C, respectively. These results open the path to developing room temperature long-lasting gas sensors based on one- and three-dimensional single-crystalline small-molecule nanowires.
Collapse
Affiliation(s)
- A Nicolás Filippin
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Ángel Campos-Lendinez
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Juan Delgado-Alvarez
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Gloria Moreno-Martinez
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Javier Castillo-Seoane
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Víctor J Rico
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Vanda F Godinho
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Ángel Barranco
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Juan R Sanchez-Valencia
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| | - Ana Borras
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain.
| |
Collapse
|
2
|
Yankov G, Atanassova V, Karatodorov S, Stefanov R, Shumanov K, Iordanova E, Daskalova A, Angelova L, Filipov E. Investigation of the Nonlinear Optical Properties of Silk Fibroin (SF) Using the Z-Scan Method. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1052. [PMID: 40077278 PMCID: PMC11901207 DOI: 10.3390/ma18051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Silk fibroin (SF), the primary protein in silkworm silk, has emerged as a promising organic nonlinear optical material due to its unique combination of optical transparency, biocompatibility, and environmental sustainability. In this study, we investigate the nonlinear optical properties of SF thin films using the z-scan technique with femtosecond laser pulses (35 fs, 800 nm, 1 kHz). Our results reveal a strong self-defocusing effect (negative nonlinear refractive index) and significant multiphoton absorption, demonstrating SF's tunable nonlinear response. Additionally, optical transmittance measurements confirm SF's partial transparency in the deep UV region, enhancing its potential for second-harmonic generation (SHG) and efficient light frequency conversion. These findings address a key knowledge gap in nonlinear optics, positioning SF as a versatile biopolymer for advanced photonic applications.
Collapse
Affiliation(s)
- Georgi Yankov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Victoria Atanassova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Stefan Karatodorov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Radostin Stefanov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Krum Shumanov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Ekaterina Iordanova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (A.D.)
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (A.D.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (A.D.)
| |
Collapse
|
3
|
Cruz Lozada JA, Rosario RA, Flores SY, Kisslinger K, Fonseca LF, Piñero Cruz DM. High-Sensitivity NO 2 Gas Sensor: Exploiting UV-Enhanced Recovery in a Hexadecafluorinated Iron Phthalocyanine-Reduced Graphene Oxide. ACS OMEGA 2025; 10:2809-2818. [PMID: 39895739 PMCID: PMC11780449 DOI: 10.1021/acsomega.4c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
Monitoring ultralow nitrogen dioxide (NO2) concentrations is crucial for air quality management and public health. However, the existing NO2 gas sensors have several defects, like high cost and power consumption, and exhibit poor selectivity. This study addresses these challenges by presenting a novel hexadecafluorinated iron phthalocyanine-reduced graphene oxide (FePcF16-rGO) covalent hybrid sensor for NO2 detection. This innovative approach, which overcomes the limitations of fabrication cost, energy efficiency, and gas selectivity, is a significant step forward in gas sensor technology. The sensor demonstrates exceptional sensitivity toward ultralow NO2 concentrations (15.14% response for 100 ppb) with a rapid 60 s UV light-induced recovery. Additionally, the sensor exhibits high selectivity for NO2, achieving a limit of detection (LOD) of 8.59 ppb. This approach paves the way for developing cost-effective, energy-efficient, and miniature NO2 monitoring devices for improved environmental monitoring and enhanced safety in workplaces where NO2 exposure is a concern.
Collapse
Affiliation(s)
- John A. Cruz Lozada
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
- Molecular
Science Research Center, San Juan 00926-2614, Puerto
Rico
| | - Ricardo A. Rosario
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
| | - Soraya Y. Flores
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
| | - Kim Kisslinger
- Center for
Functional Nanomaterials, Brookhaven National
Laboratory, Bldg 735 Upton New York 11973-5000, United
States
| | - Luis F. Fonseca
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
| | - Dalice M. Piñero Cruz
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
- Molecular
Science Research Center, San Juan 00926-2614, Puerto
Rico
| |
Collapse
|
4
|
Kosar N, Ayub K, Al-Saadi AA, Imran M, Mahmood T. Optimization of nonlinear properties of C 6O 6Li 6-doped alkalides via group I/III doping for unprecedented charge transfer and advancements in optoelectronics. Phys Chem Chem Phys 2025; 27:2033-2045. [PMID: 39751906 DOI: 10.1039/d4cp03890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported C6O6Li6 (AM@C6O6Li6) complexes to enhance their NLO response. The AM-C6O6Li6 complexes retained their structural features following interaction with the Group-IIIA elements. Interaction energies as high as -109 kcal mol-1 demonstrated the high thermodynamic stability of these complexes. An exceptional charge transfer behavior was predicted in these complexes, where the electronic density of the Group-III metals shifted toward the alkali metals, making these complexes behave as alkalides. The π conjugation of C6O6Li6 was found to withdraw excess electrons from the Group IIIA metals in these alkalides, which were subsequently transferred to the Group IA metals. The energy gap of the frontier molecular orbitals (FMOs) in the AM-C6O6Li6 complexes was notably reduced upon alkalide formation. UV-visible analysis explicitly showed a bathochromic shift in the alkalides. The first hyperpolarizability (β0) was calculated to confirm the NLO properties of these alkalides. B-C6O6Li6-K exhibited the highest β0 value of 1.75 × 105 au. The vibrational frequency-dependent first and second hyperpolarizability values illustrated an increase in hyperpolarizability at a frequency of 532 nm. A higher n2 value of 8.39 × 10-12 cm2 W-1 was obtained for B-C6O6Li6-Na at 532 nm. These results highlight the promising NLO response of the designed alkalides and their potential applications in the field of optics.
Collapse
Affiliation(s)
- Naveen Kosar
- Department of Chemistry, University of Management and Technology (UMT), C-11, Johar Town Lahore, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Bahrain
| |
Collapse
|
5
|
Cheng G, Kuan CY, Lou KW, Ho Y. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313935. [PMID: 38379512 PMCID: PMC11733724 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chit Yau Kuan
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Kuan Wen Lou
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
| | - Yi‐Ping Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
- Centre for Novel BiomaterialsThe Chinese University of Hong KongHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SAR999077China
- The Ministry of Education Key Laboratory of Regeneration MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
6
|
Fetouh HA, El-Mossalamy EH, El Desouky JM, Batouti ME. Synthesis and characterization of new organometallic lanthanides metal complexes for photodynamic therapy. Sci Rep 2024; 14:26184. [PMID: 39478101 PMCID: PMC11526036 DOI: 10.1038/s41598-024-75800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
New Schiff base ligand: 4-methoxy salicaldhyde-2-2-phenyl-hydrazono acetaldehíyde prepared by facile method. The molecular structures characterized by elemental analysis and proton magnetic resonance spectra (1H-NMR spectra). This spectra at the chemical shifts (3.5-10.39 ppm) confirmed the types and the numbers of protons. The sharp melting point at the range 110-112 °C confirmed purity. New optically active metal (samarium, terbium and gadolinium) complexes of the Schiff base synthesized in a one pot reaction. Vibrational IR spectra confirmed functional groups. Scanning electron microscopy micrographs confirmed that the modified microstructure of the metal complexes differed in morphology than the ligand. Powder X-ray diffraction patterns confirmed good crystalline structure. The optically activity of the solid metal complexes confirmed from electronic absorption spectra. The UV absorbance band at the wavelength range 280-390 nm and the intense phosphorescence bands up to 830 nm enabled application in photo dynamic therapy for apoptosis cancer cells by conversion triplet oxygen in the tissues into reactive singlet oxygen. Low charge transfer energy: 2.59-2.61 eV, high molar extinction coefficients (ε) at the order of magnitude [Formula: see text] M- 1 cm- 1 and the intense phosphorescence bands reflected good photodynamic activity. The metal complexes are thermally stable.
Collapse
Affiliation(s)
- H A Fetouh
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - E H El-Mossalamy
- Chemistry Department, Faculty of Science, Benha University, Banha, Egypt
| | - J M El Desouky
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervette El Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Dogan S, Unal M, Demircioglu PK, Molina D, Ince M, Akin S. Asymmetric phthalocyanine-based hole-transporting materials: evaluating the role of heterocyclic units and PMMA additive. Chem Commun (Camb) 2024; 60:12245-12248. [PMID: 39364587 DOI: 10.1039/d4cc03739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Two novel asymmetric phthalocyanine derivatives, ZnPc-1 and ZnPc-2, are synthesized to enhance charge transfer properties and mitigate deep-level traps on the perovskite surface using electron-rich nitrogen atoms. PSCs with ZnPc-1 and ZnPc-2 as hole-transporting materials (HTMs) achieved power conversion efficiencies (PCEs) of 12.11% and 8.98%, respectively. Incorporating a small amount of PMMA into the HTM solution significantly improved performance, resulting in PCEs of 16.2% and 12.5% for ZnPc-1 and ZnPc-2, respectively. The addition of PMMA enhances conductivity and prevents moisture intrusion, boosting both the efficiency and stability of PSCs.
Collapse
Affiliation(s)
- Sifa Dogan
- Department of Natural and Mathematical Science, Tarsus University, 33400, Tarsus, Turkey.
| | - Muhittin Unal
- Laboratory of Advanced Materials & Photovoltaics (LAMPs), Necmettin Erbakan University, 42090, Konya, Turkey
| | | | - Desiré Molina
- Area de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | - Mine Ince
- Department of Natural and Mathematical Science, Tarsus University, 33400, Tarsus, Turkey.
| | - Seckin Akin
- Laboratory of Advanced Materials & Photovoltaics (LAMPs), Necmettin Erbakan University, 42090, Konya, Turkey
- Department of Metallurgical and Materials Engineering, Necmettin Erbakan University, 42090, Konya, Turkey
| |
Collapse
|
8
|
Güleç Ö, Bilgiçli AT, Tüzün B, Taslimi P, Günsel A, Gülçin İ, Arslan M, Yarasir MN. Peripheral (E)-2-[(4-hydroxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one)]-coordinated phthalocyanines with improved enzyme inhibition properties and photophysicochemical behaviors. Arch Pharm (Weinheim) 2024; 357:e2400209. [PMID: 38838335 DOI: 10.1002/ardp.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
In this study, (E)-4-{4-[(1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]phenoxy}phthalonitrile (4) and its phthalocyanine derivatives (5-8) were synthesized for the first time. Aggregation behaviors of the novel soluble phthalocyanines in organic solvents were investigated. In addition, the efficiency of 1O2 production of (5) and ZnPc (6) was investigated. The singlet oxygen quantum yields (ΦΔ) for 2HPc (5) and ZnPc (6) were found to be 0.58 and 0.83, respectively. Additionally, novel phthalocyanines (5-8) were investigated for their ability to inhibit enzymes. They exhibited a highly potent inhibition effect on human carbonic anhydrase I and II (hCA I and II) and α-glycosidase (α-Gly) enzymes. Ki values are in the range of 2.60 ± 9.87 to 11.53 ± 6.92 µM, 3.35 ± 0.53 to 15.47 ± 1.20 µM, and 28.60 ± 4.82 to 40.58 ± 7.37 nM, respectively. The calculations of the studied molecule at the B3LYP, HF, and M062X levels in the 6-31G basis sets were made using the Gaussian package program. Afterward, the interactions occurring in the docking calculation against a protein that is the crystal structure of hCA I (PDB ID: 2CAB), the crystal structure of hCA II (PDB ID: 5AML), and the crystal structure of α-Gly (PDB ID: 1R47), were examined. Following that, Protein-Ligand Interaction Profiler (PLIP) analysis was used to look at the interactions that occurred during the docking calculation in further detail.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | | | - Burak Tüzün
- Sivas Vocational School, Department of Plant and Animal Production, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Armağan Günsel
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | | |
Collapse
|
9
|
Zanotti G, Palmeri F, Raglione V. Phthalocyanines Synthesis: A State-of-The-Art Review of Sustainable Approaches Through Green Chemistry Metrics. Chemistry 2024; 30:e202400908. [PMID: 38837556 DOI: 10.1002/chem.202400908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Driven by escalating environmental concerns, synthetic chemistry faces an urgent need for a green revolution. Green chemistry, with its focus on low environmental impacting chemicals and minimized waste production, emerges as a powerful tool in addressing this challenge. Metrics such as the E-factor guide the design of environmentally friendly strategies for chemical processes by quantifying the waste generated in obtaining target products, thus enabling interventions to minimize it. Phthalocyanines (Pcs), versatile molecules with exceptional physical and chemical properties, hold immense potential for technological applications. This review aims to bridge the gap between green chemistry and phthalocyanine synthesis by collecting the main examples of environmentally sustainable syntheses documented in the literature. The calculation of the E-factor of a selection of them provides insights on how crucial it is to evaluate a synthetic process in its entirety. This approach allows for a better evaluation of the actual sustainability of the phthalocyanine synthetic process and indicates possible strategies to improve it.
Collapse
Affiliation(s)
- Gloria Zanotti
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
| | - Federica Palmeri
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Venanzio Raglione
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
| |
Collapse
|
10
|
Boydas EB, Roemelt M. The trials and triumphs of modelling X-ray absorption spectra of transition metal phthalocyanines. Phys Chem Chem Phys 2024. [PMID: 39015952 DOI: 10.1039/d4cp01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This study explores the electronic structure of Co, Fe and Mn phthalocyanines (TMPcs) as well as their perfluorinated counterparts through a series of electronic structure calculations utilizing multireference methods and by simulating their metal L-edge and ligand (nitrogen and fluorine) K-edge X-ray absorption spectra (XAS) in an angle-resolved manner. Simulations targeting different ground-state symmetries, where relevant, have been conducted to observe changes in the N K-edge lineshape. The applicability of the quasi-degenerate formulation of n-electron valence state perturbation theory (QD-NEVPT2) for L-edge X-ray absorption spectroscopy (XAS) is evaluated, alongside the use of a restricted active space (RAS) formalism to describe the final-state multiplets generated by L-shell X-ray processes. Our findings provide valuable insights into the electronic properties of TMPcs, in particular with respect to the effect of fluorination, and demonstrate the broad applicability of various formulations of NEVPT2 in spectral simulations. Moreover, this study highlights the utility of manual truncation of the configuration spaces in order to allow for large active orbital spaces in aforementioned calculations.
Collapse
Affiliation(s)
- Esma Birsen Boydas
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| | - Michael Roemelt
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| |
Collapse
|
11
|
Zhang YX, Wu WR, Zhao N, Song YS, Wang J. S-scheme heterojunction phthalocyanine/TiO 2 photoelectrochemical sensor for innovative glutathione detection. Mikrochim Acta 2024; 191:389. [PMID: 38871997 DOI: 10.1007/s00604-024-06468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wen-Ru Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Ning Zhao
- Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, China.
| | - Yan-Song Song
- China Medical University, Shenyang, 110122, Liaoning, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
12
|
Shankara S, Hegde VN, Manju V, Eshwarappa K, Deeksha K, Hemaraju B. Crystal growth and characterization of glycine chlorzoxazone nonlinear optical crystal for energy storage capacitor applications. CHEMICAL PHYSICS IMPACT 2024; 8:100556. [DOI: 10.1016/j.chphi.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
|
13
|
Rodríguez-Mayorga M, Besalú-Sala P, Pérez-Jiménez ÁJ, Sancho-García JC. Application to nonlinear optical properties of the RSX-QIDH double-hybrid range-separated functional. J Comput Chem 2024; 45:995-1001. [PMID: 38206899 DOI: 10.1002/jcc.27302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
The effective calculation of static nonlinear optical properties requires a considerably high accuracy at a reasonable computational cost, to tackle challenging organic and inorganic systems acting as precursors and/or active layers of materials in (nano-)devices. That trade-off implies to obtain very accurate electronic energies in the presence of externally applied electric fields to consequently obtain static polarizabilities (α i j ) and hyper-polarizabilities (β i j k andγ i j k l ). Density functional theory is known to provide an excellent compromise between accuracy and computational cost, which is however largely impeded for these properties without introducing range-separation techniques. We thus explore here the ability of a modern (double-hybrid and range-separated) Range-Separated eXchange Quadratic Integrand Double-Hybrid exchange-correlation functional to compete in accuracy with more costly and/or tuned methods, thanks to its robust and parameter-free nature.
Collapse
Affiliation(s)
- M Rodríguez-Mayorga
- Department of Physical Chemistry, University of Alicante, Alicante, Spain
- Université Grenoble Alpes, CNRS, Inst. NÉEL, Grenoble, France
| | - P Besalú-Sala
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Á J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, Alicante, Spain
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, Alicante, Spain
| |
Collapse
|
14
|
Bednarik S, Demuth J, Kernal J, Miletin M, Zimcik P, Novakova V. Tuning Electron-Accepting Properties of Phthalocyanines for Charge Transfer Processes. Inorg Chem 2024; 63:8799-8806. [PMID: 38679903 PMCID: PMC11094797 DOI: 10.1021/acs.inorgchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Phthalocyanines play fundamental roles as electron-acceptors in many different fields; thus, the study of structural features affecting electron-accepting properties of these macrocycles is highly desirable. A series of low-symmetry zinc(II) phthalocyanines, in which one, three, or four benzene rings were replaced for pyrazines, was prepared and decorated with electron-neutral (alkylsulfanyl) or strongly electron-withdrawing (alkylsulfonyl) groups to study the role of the macrocyclic core as well as the effect of peripheral substituents. Electrochemical studies revealed that the first reduction potential (Ered1) is directly proportional to the number of pyrazine units in the macrocycle. Introduction of alkylsulfonyl groups had a very strong effect and resulted in a strongly electron-deficient macrocycle with Ered1 = -0.48 V vs SCE (in THF). The efficiency of intramolecular-charge transfer (ICT) from the peripheral bis(2-methoxyethyl)amine group to the macrocycle was monitored as a decrease in the sum of ΦΔ + ΦF and correlated well with the determined Ered1 values. The strongest quenching by ICT was observed for the most electron-deficient macrocycle. Importantly, an obvious threshold at -1.0 V vs SCE was observed over which no ICT occurs. Disclosed results may substantially help to improve the design of electron-donor systems based on phthalocyanines.
Collapse
Affiliation(s)
- Stefan Bednarik
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Jiri Demuth
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Jakub Kernal
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Petr Zimcik
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| |
Collapse
|
15
|
Ahsin A, Ejaz I, Sarfaraz S, Ayub K, Ma H. Polaron Formation in Conducting Polymers: A Novel Approach to Designing Materials with a Larger NLO Response. ACS OMEGA 2024; 9:14043-14053. [PMID: 38559943 PMCID: PMC10976349 DOI: 10.1021/acsomega.3c09468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Substantial efforts have been made to design and investigate new approaches for high-performance nonlinear optical (NLO) materials. Herein, we report polaron formation in conducting polymers as a new approach to designing materials with a large NLO response. A comparative study of polypyrrole and polypyrrole-based polaron (nPy+ where n = 1, 3, 5, 7, and 9) is carried out for optoelectronic and NLO properties. The studied polarons (PPy+) show excellent electronic properties and have reduced ionization potential (IP) as compared to neutral PPy, and a monotonic decrease is observed with increased chain lengths (1Py to 9Py). Interesting trends of global reactivity descriptors can be seen; the softness (S) increases with an increase in the chain length of PPy, while the hardness (η) decreases in the same fashion. The EH-L gaps for the PPy+ polaronic state are significantly lower than their corresponding neutral PPy. In the polaronic model (PPy+), radicals decisively reduce the crucial excitation energy, reminiscent of excess electrons (alkali metals). The performed TDOS spectral analysis further justifies the better conductive and electronic properties of polarons (PPy+) with increased chain lengths (conjugation). The static hyperpolarizability response (βo) is recorded up to 1.3 × 102 au for 9Py, while for polaron 9Py+, it has increased up to 3.2 × 104 au. The static hyperpolarizability of the 9Py+ polaronic state is 246 times higher than that of the corresponding neutral analogue, 9Py. It is observed that the values of βo obtained at the CAM-B3LYP/6-311+G(d,p) level of theory are comparable to those obtained at the LC-BLYP and ωB97XD functionals. The βvec values show a strong correlation with the total hyperpolarizability (βo). Furthermore, the calculated second harmonic generation (SHG) values are up to 4.0 × 106 au at 532 nm, whereas electro-optic Pockel's effect (EOPE) is much more pronounced at the smaller dispersion frequency (1064 nm). The TD-DFT study reveal the red-shifted absorption maxima (λmax) with an increased length of PPy+. A significant reduction in excitation energy (ΔE) is observed with increased length of PPy and PPy+, which also favors the improved NLO response. Hence, the studied thermally conducting polypyrrole-based polarons (PPy+) are new entries into NLO materials with better electrical and optical features.
Collapse
Affiliation(s)
- Atazaz Ahsin
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Iqra Ejaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad KPK, 22060, Pakistan
| | - Sehrish Sarfaraz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad KPK, 22060, Pakistan
| | - Haitao Ma
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Dai D, Zhang Y, Yang S, Kong W, Yang J, Zhang J. Recent Advances in Functional Materials for Optical Data Storage. Molecules 2024; 29:254. [PMID: 38202837 PMCID: PMC10780730 DOI: 10.3390/molecules29010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage. On this basis, our review outlines the representative reports for mainly introducing the functional systems based on the newly established materials applied in the optical storage field. According to the material categories, the representative functional systems are divided into rare-earth doped nanoparticles, graphene, and diarylethene. In terms of the difference of structural features and delicate properties among the three materials, the application in optical storage is comprehensively illustrated in the review. Meanwhile, the potential opportunities and critical challenges of optical storage are also discussed in detail.
Collapse
Affiliation(s)
- Dihua Dai
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Yong Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Siwen Yang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Weicheng Kong
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jijun Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| |
Collapse
|
17
|
Ben Brahim N, Touaiti S, Sellés J, Lambry JC, Negrerie M. The control of nitric oxide dynamics and interaction with substituted zinc-phthalocyanines. Dalton Trans 2024; 53:772-780. [PMID: 38086651 DOI: 10.1039/d3dt03356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Phthalocyanines are artificial macrocycles that can harbour a central metal atom with four symmetric coordinations. Similar to metal-porphyrins, metal-phthalocyanines (M-PCs) may bind small molecules, especially diatomic gases such as NO and O2. Furthermore, various chemical chains can be grafted at the periphery of the M-PC macrocycle, which can change its properties, including the interaction with diatomic gases. In this study, we synthesized Zn-PCs with two different substituents and investigated their effects on the interaction and dynamics of nitric oxide (NO). Time-resolved absorption spectroscopy from picosecond to millisecond revealed that NO dynamics dramatically depends on the nature of the groups grafted to the Zn-PC macrocycle. These experimental results were rationalized by DFT calculations, which demonstrate that electrostatic interactions between NO and the quinoleinoxy substituent modify the potential energy surface and decrease the energy barrier for NO recombination, thus controlling its affinity.
Collapse
Affiliation(s)
- Nassim Ben Brahim
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Bd. de l'Environnement, 5019 Monastir, Tunisia
| | - Sarra Touaiti
- Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l'Education et de la Formation Continue, 2000 Bardo, Tunisia
| | - Julien Sellés
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Micro-Algues, UMR 7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR-7645, Ecole Polytechnique, Palaiseau, France.
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR-7645, Ecole Polytechnique, Palaiseau, France.
| |
Collapse
|
18
|
Khalid M, Murtaza S, Gull K, Abid S, Imran M, Braga AAC. Influence of acceptors on the optical nonlinearity of 5 H-4-oxa-1,6,9-trithia-cyclopenta[ b]-as-indacene-based chromophores with a push-pull assembly: a DFT approach. RSC Adv 2024; 14:1169-1185. [PMID: 38174281 PMCID: PMC10762516 DOI: 10.1039/d3ra06673h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Herein, a series of compounds (TPD1-TPD6) having a D-π-A architecture was quantum chemically designed via the structural modulation of TPR. Quantum chemical calculations were employed to gain a comprehensive insight into the structural and optoelectronic properties of the designed molecules at the M06/6-311G(d,p) level. Interestingly, all the designed chromophores displayed narrow energy gaps (2.123-1.788 eV) and wider absorption spectra (λmax = 833.619-719.709 nm) with a bathochromic shift in comparison to the reference compound (λmax = 749.602 nm and Egap = 3.177 eV). Further, Egap values were utilized to evaluate global reactivity parameters (GRPs), which indicate that all the chromophores expressed higher softness (σ = 0.134-0.559 eV-1) and lower hardness (η = 4.155-4.543 eV) values than the reference chromophore. Efficient charge transfer from donors towards acceptors was noted through FMOs, which was also supported by DOS and TDM analyses. Overall, the TPD3 derivative exhibited a remarkable reduction in the HOMO-LUMO band gap (1.788 eV) with a red shift as λmax = 833.619 nm. Furthermore, it exhibited prominent linear and non-linear characteristics such as μtotal = 24.1731 D, 〈α〉 = 2.89 × 10-22 esu, and βtotal = 7.24 × 10-27 esu, among all derivatives. The above findings revealed that significant non-linear optical materials could be achieved through structural tailoring with studied efficient acceptors.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Khansa Gull
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| |
Collapse
|
19
|
Dereven'kov IA, Maiorova LA, Koifman OI, Salnikov DS. High Reactivity of Supermolecular Nanoentities of a Vitamin B 12 Derivative in Langmuir-Schaefer Films Toward Gaseous Toxins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17240-17250. [PMID: 38050683 DOI: 10.1021/acs.langmuir.3c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Recently, we have described the first supermolecular nanoentities (SMEs) of a vitamin B12 derivative, viz., a monocyano form of heptabutyl cobyrinate ((CN-)BuCby), unique nanoparticles with strong noncovalent intermolecular interactions, and emerging optical and redox properties. In this work, the fast response of thin films based on the SMEs of the B12 derivative to gaseous toxins (viz., hydrogen cyanide, ammonia, sulfur dioxide, and hydrogen sulfide) particularly dangerous for humans was demonstrated. The reaction between SMEs of (CN-)BuCby in Langmuir-Schaefer (LS) films and HCN generates dicyano species and proceeds ca. 5-fold more rapidly than the process involving drop-coated films that contain (CN-)BuCby in molecular form. The highest sensitivity toward HCN was achieved by using thicker LS films. The reaction proceeds reversibly: upon exposure to air, the dicyano complex undergoes partial decyanation. The decyanated complex retains reactivity toward HCN for at least four subsequent cycles. The processes involving SMEs of (CN-)BuCby and NH3, SO2, and H2S are irreversible, and the sensitivity of the films toward these gases is lower in comparison with HCN. Presented data provides mechanistic information on the reactions involving solid vitamin B12 derivatives and gaseous toxins. In the case of NH3, deprotonation of the coordinated Co(III)-ion water molecule occurs, and the generated hydroxocyano species exhibit high air stability. After binding of SO2, a mixture of sulfito and dicyano species is produced, and the regenerated film contains aquacyano and diaqua or aquahydroxo species, which possess high reactivity toward gaseous toxins. Reaction with H2S produces a mixture of the Co(III)-dicyano form and Co(II)-species containing sulfide oxidation products, which are resistant to aerobic oxidation. Our findings can be used for the development of naked-eye, electronic optic, and chemiresistive sensors toward gaseous toxins with improved reactivity for prompt cyanide detection in air, blood, and plant samples and for analysis of exhaled gases for the diagnosis of diseases.
Collapse
Affiliation(s)
- Ilia A Dereven'kov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Larissa A Maiorova
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
- Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow 119333, Russia
| | - Oscar I Koifman
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Denis S Salnikov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| |
Collapse
|
20
|
TOPKAYA D, ŞAHİN Z, İŞCİ Ü, DUMOULİN F. Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. Turk J Chem 2023; 47:814-836. [PMID: 38173733 PMCID: PMC10760877 DOI: 10.55730/1300-0527.3582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/31/2023] [Accepted: 10/03/2023] [Indexed: 01/05/2024] Open
Abstract
Phthalocyanines are tetrapyrrolic artificial porphyrinoids that play major roles in advanced biological and technological applications. Research on this family of dyes is particularly active in Türkiye, with many derivatives being prepared from 4,5-dihexylthiophthalonitrile DiSHexPN, which is one of the most popular noncommercially available building blocks for phthalocyanines. This review summarizes the phthalocyanines and their versatile properties and applications that have been published since 1994, when the synthesis of DiSHexPN was first described, to emphasize the importance of this building block in plentiful applications, all with biomedical or technological impact.
Collapse
Affiliation(s)
- Derya TOPKAYA
- Department of Chemistry, Faculty of Sciences, Dokuz Eylül University, İzmir,
Turkiye
| | - Zeynel ŞAHİN
- Department of Metallurgical & Materials Engineering, Faculty of Technology, Marmara University, İstanbul,
Turkiye
| | - Ümit İŞCİ
- Department of Metallurgical & Materials Engineering, Faculty of Technology, Marmara University, İstanbul,
Turkiye
| | - Fabienne DUMOULİN
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| |
Collapse
|
21
|
Besalú-Sala P, Bruneval F, Pérez-Jiménez ÁJ, Sancho-García JC, Rodríguez-Mayorga M. RPA, an Accurate and Fast Method for the Computation of Static Nonlinear Optical Properties. J Chem Theory Comput 2023; 19:6062-6069. [PMID: 37696751 PMCID: PMC10861135 DOI: 10.1021/acs.jctc.3c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The accurate computation of static nonlinear optical properties (SNLOPs) in large polymers requires accounting for electronic correlation effects with a reasonable computational cost. The Random Phase Approximation (RPA) used in the adiabatic connection fluctuation theorem is known to be a reliable and cost-effective method to render electronic correlation effects when combined with density-fitting techniques and integration over imaginary frequencies. We explore the ability of the RPA energy expression to predict SNLOPs by evaluating RPA electronic energies in the presence of finite electric fields to obtain (using the finite difference method) static polarizabilities and hyperpolarizabilities. We show that the RPA based on hybrid functional self-consistent field calculations yields accurate SNLOPs as the best-tuned double-hybrid functionals developed today, with the additional advantage that the RPA avoids any system-specific adjustment.
Collapse
Affiliation(s)
- Pau Besalú-Sala
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for
Molecular and Life Sciences (AIMMS), Vrije
Universiteit Amsterdam, De Boelelaan 1083, HV Amsterdam 1081, The Netherlands
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, Girona 17003, Spain
| | - Fabien Bruneval
- Université
Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement
des Matériaux, SRMP, Gif-sur-Yvette 91191, France
| | | | | | | |
Collapse
|
22
|
Klyamer D, Sukhikh A, Bonegardt D, Krasnov P, Popovetskiy P, Basova T. Thin Films of Chlorinated Vanadyl Phthalocyanines as Active Layers of Chemiresistive Sensors for the Detection of Ammonia. MICROMACHINES 2023; 14:1773. [PMID: 37763935 PMCID: PMC10534441 DOI: 10.3390/mi14091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Halogenated metal phthalocyanines are promising materials for the manufacture of active layers of chemiresistive sensors for the detection of various gases. Despite the high interest in such sensors, there are few systematic studies of the position of halogen substituents in phthalocyanine macroring on the chemiresistive response of their films to gases. In this work, we prepared and studied films of novel tetrachlorosubstituted vanadyl phthalocyanine derivatives with Cl substituents in the peripheral (VOPcCl4-p) and nonperipheral (VOPcCl4-np) positions of the phthalocyanine ring as active layers of chemiresistive sensors to reveal the effect of the position of substituents on their structure and sensor response to low concentrations of NH3. It was shown that the films of VOPcCl4-p exhibited a noticeably higher sensor response to NH3 than the VOPcCl4-np ones. The limit of detection of NH3 was 0.7 ppm. The sensing layers demonstrated a reversible sensor response at room temperature with fairly low response/recovery times. It was also demonstrated that NH3 can be detected in the presence of various interfering gases (CO2 and H2) and some volatile organic vapors, as well as in a mixture of gases with a composition close to exhaled air.
Collapse
Affiliation(s)
- Darya Klyamer
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (A.S.); (D.B.); (P.P.)
| | - Alexandr Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (A.S.); (D.B.); (P.P.)
| | - Dmitry Bonegardt
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (A.S.); (D.B.); (P.P.)
| | - Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, 26 Kirensky St., 660074 Krasnoyarsk, Russia;
| | - Pavel Popovetskiy
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (A.S.); (D.B.); (P.P.)
| | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (A.S.); (D.B.); (P.P.)
| |
Collapse
|
23
|
Aarabi M, Aranda D, Gholami S, Meena SK, Lerouge F, Bretonniere Y, Gürol I, Baldeck P, Parola S, Dumoulin F, Cerezo J, Garavelli M, Santoro F, Rivalta I. Quantum-Classical Protocol for Efficient Characterization of Absorption Lineshape and Fluorescence Quenching upon Aggregation: The Case of Zinc Phthalocyanine Dyes. J Chem Theory Comput 2023; 19:5938-5957. [PMID: 37641958 PMCID: PMC10500990 DOI: 10.1021/acs.jctc.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/31/2023]
Abstract
A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Daniel Aranda
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático
J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Samira Gholami
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Santosh Kumar Meena
- Department
of Chemical Engineering, Indian Institute
of Technology Ropar, Rupnagar, 140001 Punjab, India
| | - Frederic Lerouge
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Yann Bretonniere
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Ilke Gürol
- TÜBITAK
Marmara Research Center, Materials Technologies, Gebze, 41470 Kocaeli, Türkiye
| | - Patrice Baldeck
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Stephane Parola
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Fabienne Dumoulin
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Javier Cerezo
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Departamento
de Química and Institute for Advanced Research in Chemical
Sciences (IAdChem), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Fabrizio Santoro
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| |
Collapse
|
24
|
Akpe MA, Okon GA, Louis H, Benjamin I, Akem MU, Brown OI, Adalikwu SA, Adeyinka AS. Metals (Ga, In) decorated fullerenes as nanosensors for the adsorption of 2,2-dichlorovinyldimethylphosphate agrochemical based pollutant. Sci Rep 2023; 13:10470. [PMID: 37380664 DOI: 10.1038/s41598-023-37650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
Owing to the fact that the use of 2,2-dichlorovinyldimethylphosphate (DDVP) as an agrochemical has become a matter of concern due to its persistence and potential harm to the environment and human health. Detecting and addressing DDVP contamination is crucial to protect human health and mitigate ecological impacts. Hence, this study focuses on harnessing the properties of fullerene (C60) carbon materials, known for their biological activities and high importance, to develop an efficient sensor for DDVP. Additionally, the sensor's performance is enhanced by doping it with gallium (Ga) and indium (In) metals to investigate the sensing and trapping capabilities of DDVP molecules. The detection of DDVP is carefully examined using first-principles density functional theory (DFT) at the Def2svp/B3LYP-GD3(BJ) level of theory, specifically analyzing the adsorption of DDVP at the chlorine (Cl) and oxygen (O) sites. The adsorption energies at the Cl site were determined as - 57.894 kJ/mol, - 78.107 kJ/mol, and - 99.901 kJ/mol for Cl_DDVP@C60, Cl_DDVP@Ga@C60, and Cl_DDVP@In@C60 interactions, respectively. At the O site, the adsorption energies were found to be - 54.400 kJ/mol, - 114.060 kJ/mol, and - 114.056 kJ/mol for O_DDVP@C60, O_DDVP@Ga@C60, and O_DDVP@In@C60, respectively. The adsorption energy analysis highlights the chemisorption strength between the surfaces and the DDVP molecule at the Cl and O sites of adsorption, indicating that the O adsorption site exhibits higher adsorption energy, which is more favorable according to the thermodynamics analysis. Thermodynamic parameters (∆H and ∆G) obtained from this adsorption site suggest considerable stability and indicate a spontaneous reaction in the order O_DDVP@Ga@C60 > O_DDVP@In@C60 > O_DDVP@C60. These findings demonstrate that the metal-decorated surfaces adsorbed on the oxygen (O) site of the biomolecule offer high sensitivity for detecting the organophosphate molecule DDVP.
Collapse
Affiliation(s)
- Michael A Akpe
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Gideon A Okon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria.
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
| | - Martilda U Akem
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Onyebuenyi I Brown
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Stephen A Adalikwu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, Research Centre for Synthesis and Catalysis, University of Johannesburg, Johannesburg, 2006, South Africa
| |
Collapse
|
25
|
Gai S, Wang X, Zhang R, Zeng K, Miao S, Wu Y, Wang B. A controllably fabricated polypyrrole nanorods network by doping a tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt for enhanced ammonia sensing at room temperature. RSC Adv 2023; 13:13725-13734. [PMID: 37152582 PMCID: PMC10158350 DOI: 10.1039/d3ra00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The morphology adjustment and functional doping optimization of polypyrrole (PPy) are of great significance in improving its gas sensing performance. Here, the PPy-0.5TcCoPc nanorods with a uniform dispersed 3-D network were prepared using one-step in situ polymerization using the electrostatic interaction between dopant counterion substituents in tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt (TcCoPcTs) with larger space structure and pyrrole (Py) molecules, in which TcCoPcTs is not only used as a dopant molecule crosslinking PPy chains to obtain a 3-D network, thus improving the conductivity, but also as a sensor accelerator to improve the gas-sensing performance. The resulting PPy-TcCoPc hybrid exhibits superior NH3-sensing properties than PPy and tetra-β-carboxylate cobalt phthalocyanine (TcCoPc) under the same test conditions, especially the PPy-0.5TcCoPc sensor shows ultrafast response/recovery time to 50 ppm NH3 (8.1 s/370.8 s), low detection limit of 8.1 ppb and excellent gas selectivity at room temperature (20 °C). Besides, the PPy-0.5TcCoPc sensor also maintains superior response (49.3% to 50 ppm NH3), humidity resistance and conspicuous stability over 45 days. The excellent NH3-sensing performance of the PPy-0.5TcCoPc hybrid arises from the excellent gas selectivity of TcCoPc, the remarkable response mechanism between PPy and NH3, the high electrical conductivity, abundant active sites and good electron transport ability of the unique 3-D network with large specific surface area. The morphology regulation and functional doping optimization strategy of TcCoPcTs doped PPy broaden the research direction of ideal gas sensor materials.
Collapse
Affiliation(s)
- Shijie Gai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Xiaolin Wang
- School of Material and Chemical Engineering, Heilongjiang Institute of Technology Harbin 150050 P. R. China
| | - Runze Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Kun Zeng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Shoulei Miao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yiqun Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences P.O. Box 800216 Shanghai 201800 China
| | - Bin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
26
|
Basova TV, Belykh DV, Vashurin AS, Klyamer DD, Koifman OI, Krasnov PO, Lomova TN, Loukhina IV, Motorina EV, Pakhomov GL, Polyakov MS, Semeikin AS, Stuzhin PA, Sukhikh AS, Travkin VV. Tetrapyrrole Macroheterocyclic Compounds. Structure–Property Relationships. J STRUCT CHEM+ 2023; 64:766-852. [DOI: 10.1134/s0022476623050037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 01/06/2025]
|
27
|
Klyamer D, Shao W, Krasnov P, Sukhikh A, Dorovskikh S, Popovetskiy P, Li X, Basova T. Cobalt and Iron Phthalocyanine Derivatives: Effect of Substituents on the Structure of Thin Films and Their Sensor Response to Nitric Oxide. BIOSENSORS 2023; 13:bios13040484. [PMID: 37185559 PMCID: PMC10136685 DOI: 10.3390/bios13040484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
In this work, we study the effect of substituents in cobalt(II) and iron(II) phthalocyanines (CoPcR4 and FePcR4 with R = H, F, Cl, tBu) on the structural features of their films, and their chemi-resistive sensor response to a low concentration of nitric oxide. For the correct interpretation of diffractograms of phthalocyanine films, structures of CoPcCl4 and FePcCl4 single crystals were determined for the first time. Films were tested as active layers for the determination of low concentrations of NO (10-1000 ppb). It was found that the best sensor response to NO was observed for the films of chlorinated derivatives MPcCl4 (M = Co, Fe), while the lowest response was in the case of MPc(tBu)4 films. FePcCl4 films exhibited the maximal response to NO, with a calculated limit of detection (LOD) of 3 ppb; the response and recovery times determined at 30 ppb of NO were 30 s and 80 s, respectively. The LOD of a CoPcCl4 film was 7 ppb. However, iron phthalocyanine films had low stability and their sensitivity to NO decreased rapidly over time, while the response of cobalt phthalocyanine films remained stable for at least several months. In order to explain the obtained regularities, quantum chemical calculations of the binding parameters between NO and phthalocyanine molecules were carried out. It was shown that the binding of NO to the side atoms of phthalocyanines occurred through van der Waals forces, and the values of the binding energies were in direct correlation with the values of the sensor response to NO.
Collapse
Affiliation(s)
- Darya Klyamer
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Wenping Shao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660074, Russia
| | - Aleksandr Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Svetlana Dorovskikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Pavel Popovetskiy
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Xianchun Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
28
|
Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Synthesis and characterization of novel Schiff base-silicon (IV) phthalocyanine complex for photodynamic therapy of breast cancer cell lines. Photodiagnosis Photodyn Ther 2023; 42:103504. [PMID: 36907257 DOI: 10.1016/j.pdpdt.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Photodynamic therapy is an alternative anticancer treatment approach that promises high therapeutic efficacy. In this study, it is aimed to investigate the PDT-mediated anticancer effects of newly synthesized silicon phthalocyanine (SiPc) molecules on MDA-MB-231, MCF-7 breast cancer cell lines, and non-tumorigenic MCF-10A breast cell line. METHODS Novel bromo substituted Schiff base (3a), its nitro homolog (3b), and their silicon complexes (SiPc-5a and SiPc-5b) were synthesized. Their proposed structures were confirmed by FT-IR, NMR, UV-vis and MS instrumental techniques. MDA-MB-231, MCF-7 and MCF-10A cells were illuminated at a light wavelength of 680 nm for 10 min, giving a total irradiation dose of 10 j/cm2. MTT assay was used to determine the cytotoxic effects of SiPc-5a and SiPc-5b. Apoptotic cell death was analyzed using flow cytometry. Changes in the mitochondrial membrane potential were determined by TMRE staining. Intracellular ROS generation was observed microscopically using H2DCFDA dye. Colony formation assay and in vitro scratch assay were performed to analyze the clonogenic activity and cell motility. Transwell migration and matrigel invasion analyzes were conducted to observe changes in the migration and invasion status of the cells. RESULTS The combination of SiPc-5a and SiPc-5b with PDT exhibited cytotoxic effects on cancer cells and triggered cell death. SiPc-5a/PDT and SiPc-5b/PDT decreased mitochondrial membrane potential and increased intracellular ROS production. Statistically significant changes were detected in cancer cells' colony-forming ability and motility. SiPc-5a/PDT and SiPc-5b/PDT reduced cancer cells' migration and invasion capacities. CONCLUSION The present study identifies PDT-mediated antiproliferative, apoptotic, and anti-migratory characteristics of novel SiPc molecules. The outcomes of this study emphasize the anticancer properties of these molecules and suggest that they may be evaluated as drug-candidate molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Ceren Sarı
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Değirmencioğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
29
|
Tao JR, Shuai HJ, Xiao X, Li XM, Jin CM. Syntheses and Properties of Imidazolium-based Quaternary Salts with D-π-A Unit Containing Azobenzene Groups. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
30
|
Xiang G, Li N, Chen GH, Li QH, Chen SM, He YP, Zhang J. Enhancing Third-Order Nonlinear Optical Property by Regulating Interaction between Zr 4(embonate) 6 Cage and N, N-Chelated Transition-Metal Cation. Molecules 2023; 28:molecules28052301. [PMID: 36903547 PMCID: PMC10005618 DOI: 10.3390/molecules28052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Herein, the combination of anionic Zr4L6 (L = embonate) cages and N, N-chelated transition-metal cations leads to a series of new cage-based architectures, including ion pair structures (PTC-355 and PTC-356), dimer (PTC-357), and 3D frameworks (PTC-358 and PTC-359). Structural analyses show that PTC-358 exhibits a 2-fold interpenetrating framework with a 3,4-connected topology, and PTC-359 shows a 2-fold interpenetrating framework with a 4-connected dia network. Both PTC-358 and PTC-359 can be stable in air and other common solvents at room temperature. The investigations of third-order nonlinear optical (NLO) properties indicate that these materials show different degrees of optical limiting effects. It is surprising that increasing coordination interactions between anion and cation moieties can effectively enhance their third-order NLO properties, which can be attributed to the formation of coordination bonds that facilitate charge transfer. In addition, the phase purity, UV-vis spectra, and photocurrent properties of these materials were also studied. This work provides new ideas for the construction of third-order NLO materials.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Na Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Correspondence: (S.-M.C.); (Y.-P.H.)
| | - Yan-Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (S.-M.C.); (Y.-P.H.)
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
31
|
Chen Z, Li F, Han J, Yang Z, Pan S, Mutailipu M. Cs[B 3O 3F 2(OH) 2]: discovery of a hydroxyfluorooxoborate guided by selective organic-inorganic transformation. Chem Commun (Camb) 2023; 59:2114-2117. [PMID: 36723363 DOI: 10.1039/d2cc06924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective transformation between organic and inorganic systems is crucial but still remains a challenge. Herein, we demonstrated that selective organic-inorganic transformation is a simple but effective strategy to find new hydroxyfluorooxoborates. By replacing the [Ph4P]/[Ph3MeP] organic cations with Cs atoms, a new hydroxyfluorooxoborate Cs[B3O3F2(OH)2] with three-membered [B3O3F2(OH)2] clusters was synthesized. Theoretical analysis confirmed the effects of different components in the lattice of reported structure on the optical properties.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
32
|
Farahmand S, Ayazi-Nasrabadi R, Ali Zolfigol M. Amino-Cobalt(II)phthalocyanine supported on silica chloride as an efficient and reusable heterogeneous photocatalyst for oxidation of alcohols. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Kociscakova L, Rando C, Kozlikova M, Machacek M, Novakova V, Šindelář V, Zimcik P. Monomerization of Phthalocyanines in Water via Their Supramolecular Interactions with Cucurbiturils. J Org Chem 2023; 88:988-1002. [PMID: 36603212 DOI: 10.1021/acs.joc.2c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aggregation of phthalocyanines (Pcs) represents a problematic feature that decreases the potential of these macrocycles in a number of applications. In this work, we present a supramolecular approach based on the interaction of aminoadamantyl-substituted Pcs with bulky and hydrophilic cucurbit[7]uril (CB[7]) to increase the levels of Pc monomers in water. A series of zinc(II) Pcs substituted at positions α or β by an aminoadamantyl substituent (with a different level of alkylation of nitrogen) were prepared from the corresponding phthalonitriles. A 1H nuclear magnetic resonance study of the interaction of phthalonitriles with CB[7] in water confirmed the formation of an inclusion complex with an aminoadamantyl moiety with Ka values of ∼1012 M-1. The interaction of CB[7] with Pcs in water substantially weakened H-type aggregation and improved both fluorescence and singlet oxygen production, confirming that this approach is efficient for the monomerization of Pcs. In vitro evaluation of the photodynamic activity of prepared Pcs led to EC50 values in the submicromolar range on HeLa and SK-MEL-28 cells. However, the activity decreased for at least an order of magnitude after host-guest interaction with CB[7] despite better photophysical properties. This was attributed to a much lower uptake by cells due to the very bulky and hydrophilic character of the Pc-CB[7] assembly.
Collapse
Affiliation(s)
- Lucia Kociscakova
- Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove50005, Czech Republic
| | - Carola Rando
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic.,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Magdalena Kozlikova
- Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove50005, Czech Republic
| | - Miloslav Machacek
- Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove50005, Czech Republic
| | - Veronika Novakova
- Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove50005, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic.,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Petr Zimcik
- Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove50005, Czech Republic
| |
Collapse
|
34
|
Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Enclathration of Mn(II)(H2O)6 guests and unusual Cu⋯O bonding contacts in supramolecular assemblies of Mn(II) Co-crystal hydrate and Cu(II) Pyridinedicarboxylate: Antiproliferative evaluation and theoretical studies. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Muthukkumar M, Karthikeyan A, Kamalesu S, Kadri M, Jennifer SJ, Razak IA, Nehru S. Synthesis, crystal structure, optical and DFT studies of a novel Co(II) complex with the mixed ligands 3-bromothiophene-2-carboxylate and 2-aminopyridine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
36
|
Huang Q, Hye Lee E, Oh BM, Chun HW, Lee W, Kim JH. Strategy for colorimetric and reversible recognition of strong acid in solution, solid, and dyed fabric conditions: Substitution of aminophenoxy groups to phthalocyanine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121565. [PMID: 35779473 DOI: 10.1016/j.saa.2022.121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/02/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
A series of novel peripherally tetra- and octa-substituted copper phthalocyanines (CuPcs) bearing various aminophenoxy groups was designed and synthesized for detecting strong Brønsted acids. Octa-(diethyl-aminophenoxy)-substituted CuPc 5 exhibited excellent HCl detection capability with high sensitivity (limit of detection: 240 ppb), rapid (<2s), and selectivity for strong acids in versatile conditions including solution, solid, and dyed fabric. Furthermore, CuPc 5 noted reusability in recyclable tests with HCl and NH3, demonstrating its great potential for practical detection of HCl and ammonia gas leak under various environments. Based on systemic characterizations based on UV-Vis absorption spectra and NMR, we suggest that the proton of HCl associated with the N atom of CuPc 5, and the proton sensing abilities are directly related to the dissociation constants of the amine groups. The steric hindrance of alkyl chains and molar absorption coefficient of the CuPc species in THF solvent, as well as the H2O content of the solvent system, also affected the sensing performance. Due to less bulky nature of diethyl-amino groups having higher pKa and stronger basicity, CuPc 5 featured effective recognition of strong acids with pKa value less than -2.0 (Ka > 100). To the best of our knowledge, this is the first demonstration of pKa-sensitive colorimetric chemosensor using CuPc backbone, in particular for distinguishing strong Brønsted acids such as HCl.
Collapse
Affiliation(s)
- Qianqian Huang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Eun Hye Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Byeong M Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hye W Chun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Woosung Lee
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea.
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
37
|
Ndebele N, Nyokong T. Electrocatalytic behaviour of Chalcone Substituted Co, Cu, Mn and Ni Phthalocyanines towards the detection of nitrite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Langerreiter D, Kostiainen MA, Kaabel S, Anaya‐Plaza E. A Greener Route to Blue: Solid-State Synthesis of Phthalocyanines. Angew Chem Int Ed Engl 2022; 61:e202209033. [PMID: 35876617 PMCID: PMC9804881 DOI: 10.1002/anie.202209033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/09/2023]
Abstract
Phthalocyanines are important organic dyes with a broad applicability in optoelectronics, catalysis, sensing and nanomedicine. Currently, phthalocyanines are synthetized in high boiling organic solvents, like dimethylaminoethanol (DMAE), which is a flammable, corrosive, and bioactive substance, miscible with water and harmful to the environment. Here we show a new solid-state approach for the high-yielding synthesis of phthalocyanines, which reduces up to 100-fold the amount of DMAE. Through systematic screening of solid-state reaction parameters, carried out by ball-milling and aging, we reveal the influence of key variables-temperature, presence of a template, and the amount and role of DMAE in the conversion of tBu phthalonitrile to tetra-tBu phthalocyanine. These results set the foundations to synthesize these high-performance dyes through a greener approach, opening the field of solid-state synthesis to a wider family of phthalocyanines.
Collapse
Affiliation(s)
| | | | - Sandra Kaabel
- Department of Bioproducts and BiosystemsAalto University02150EspooFinland
| | | |
Collapse
|
39
|
Asif HM, Khan MA, Zhou Y, Zhang L, Iqbal A, Hussain S, Khalid M, Rani S, Sun R. Synthesis, Characterization and Remarkable Nonlinear Absorption of a Pyridyl Containing Symmetrical Porphyrin-Polyoxometalate Hybrid. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Langerreiter D, Kostiainen MA, Kaabel S, Anaya-Plaza E. A Greener Route to Blue: Solid‐State Synthesis of Phthalocyanines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Hassan AU, Sumrra SH. Exploration of Pull-Push Effect for Novel Photovoltaic Dyes with A-π-D Design: A DFT/TD-DFT Investigation. J Fluoresc 2022; 32:1999-2014. [PMID: 35802211 DOI: 10.1007/s10895-022-03003-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
The π-rich versus π-poor units in 4,6-di(thiophen-2-yl)pyrimidine (DTB) alternating the π-backbone of solar cells dyes have been extended with a push-pull technique to lower their HOMO-LUMO energy gap and to increase Intramolecular Charge Transfer (ICT). Density functional theory was used to optimize the ground state molecular geometries of newly designed dyes (DTB1-DTB6). Time Dependent DFT (TD-DFT) was used to simulate the Uv-vis spectral values at the maximum absorbance values ranging between 481-535 nm. These values were red shifted from DTB value of experimental (333 nm) and theoretical (346 nm). however, their computed absorbance and fluorescence spectra revealed a bathochromic shift of them upon an increasing the solvent polarity. Different DFT functionals such as (B3LYP, CAM-B3LYP, B97XD, and APFD) were employed to choose their proper use Uv-visible analysis to reveal an unexpected coherence at the B3LYP level with experimental values. As a result, the B3LYP with most diffused basis sets of 6-31G + (d,p) were used for further calculations. The parameters of Global Chemical reactivities revealed that all the dyes had a softer nature with their softness value range of 0.27-0.41. their Ionization Potentials (IP) ranged between 6.21-8.10 eV to comply that the new dyes had good electron donating potentials. With a good electron injection potential of -1.47-1.74 eV, aluminum can be the best electrode, while Au is excellent towards a hole injection operation which had the potential range of 1.79-3.68 eV. For Natural Bond Orbital (NBO) assessment, (N14)LP → (F16-F28)π* with stabilization energy of 42.55 kcal/mol was noted for DTB4. Their Second order hyperpolarizability [Formula: see text] values as their Nonlinear Optical (NLO) response ranged between 59.16-232.11 debye-angstrom-1 which were almost 6 times higher than the reference DTB (8.47D). The NLO attributes has also shown that a dyes with its small bandgap was related with higher hyperpolarizability values. Because of the decreased reorganization frequencies, newly discovered derivatives with electron transfer qualities might be comparable to or equivalent to those of commonly used electron transmission materials.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, PK, 54400, Gujrat, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, PK, 54400, Gujrat, Pakistan
| |
Collapse
|
42
|
Klyamer DD, Basova TV. EFFECT OF THE STRUCTURAL FEATURES OF METAL PHTHALOCYANINE FILMS ON THEIR ELECTROPHYSICAL PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Novel pull–push organic switches with D–π–A structural designs: computational design of star shape organic materials. Struct Chem 2022. [DOI: 10.1007/s11224-022-01983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Yabaş E, Kölemen S, Biçer E, Almammadov T, Başer P, Kul M. Organo-soluble dendritic zinc phthalocyanine: photoluminescence and fluorescence properties. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ebru Yabaş
- Sivas Cumhuriyet University, Advanced Technology Application and Research Center, Sivas, Turkey
| | - Safacan Kölemen
- Faculty of Science, Department of Chemistry, Koç University, İstanbul, Turkey
| | - Emre Biçer
- Faculty of Engineering and Natural Sciences, Sivas University of Science and Technology, Sivas, Turkey
| | - Toghrul Almammadov
- Faculty of Science, Department of Chemistry, Koç University, İstanbul, Turkey
| | - Pınar Başer
- Faculty of Science, Department of Physics, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Kul
- Faculty of Engineering and Natural Sciences, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
45
|
Xia J, Cao R, Wu Q. Transition metal decorated phthalocyanine as a potential host material for lithium polysulfides: a first-principles study. RSC Adv 2022; 12:13975-13984. [PMID: 35558832 PMCID: PMC9093166 DOI: 10.1039/d2ra02049a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
The shuttle effect caused by the soluble long-chain lithium polysulfides greatly hinders the practical application of lithium-sulfur (Li-S) batteries. Therefore, the introduction of suitable anchoring materials is more effective to mitigate this problem. Transition metal phthalocyanines (TMPc) are regarded as a new class of sulfur host materials. Here, 4d transition metal (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) decorated phthalocyanines are designed and systematically researched for the performance analysis of anchoring S8/LiPSs by first-principles calculations. The results reveal that the bonding strength of LiPSs can be well adjusted by introducing suitable 4d transition metals into the phthalocyanine structure. The electronic structure analysis indicates the formation of TM-S bonds between the TMPc substrate materials and the LiPSs, which is essential to weaken the Li-S bonds and hence slow down the shuttle effect of LiPSs. ZrPc and NbPc both exhibit excellent potential and thermal stability for facilitating the conversion of LiPSs, as well as a better promoting effect for the sulfur reduction reactions (SRR) with a reduced Gibbs free energy in the rate-determining step (*Li2S2 → *Li2S) during the discharge reaction process. These findings in our work may encourage further experimental and theoretical research for anchoring LiPSs with TMPc as a host material.
Collapse
Affiliation(s)
- Jiezhen Xia
- Department of Physics, School of Science, Tibet University Lhasa 850000 China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University Lhasa 850000 China
| | - Rong Cao
- Department of Physics, School of Science, Tibet University Lhasa 850000 China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University Lhasa 850000 China
| | - Qi Wu
- Department of Physics, School of Science, Tibet University Lhasa 850000 China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University Lhasa 850000 China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education Lhasa 850000 China
| |
Collapse
|
46
|
Vargas-Zúñiga GI, Boreen MA, Mangel DN, Arnold J, Sessler JL. Porphyrinoid actinide complexes. Chem Soc Rev 2022; 51:3735-3758. [PMID: 35451437 DOI: 10.1039/d2cs00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diverse coordination modes and electronic features of actinide complexes of porphyrins and related oligopyrrolic systems (referred to as "porpyrinoids") have been the subject of interest since the 1960s. Given their stability and accessibility, most work with actinides has focused on thorium and uranium. This trend is also seen in the case of porphyrinoid-based complexation studies. Nevertheless, the diversity of ligand environments provided by porphyrinoids has led to the stabilization of a number of unique complexes with the early actinides that are often without structural parallel within the broader coordination chemical lexicon. This review summarizes key examples of prophyrinoid actinide complexes reported to date, including the limited number of porphyrinoid systems involving transuranic elements. The emphasis will be on synthesis and structure; however, the electronic features and reactivity pattern of representative systems will be detailed as well. Coverage is through December of 2021.
Collapse
Affiliation(s)
- Gabriela I Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| |
Collapse
|
47
|
Botnar AA, Znoiko SA, Domareva NP, Kazaryan KY, Tikhomirova TV, Gornukhina OV, Koshel SG, Vashurin AS. Synthesis and Luminescent Properties of Magnesium Complexes with Phenoxy-Substituted Phthalocyanine Ligands. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Özcan S, Uslu Kobak R, Budak O, KOCA ATIF, BAYIR ZEHRA. Synthesis, Electrochemistry, Spectroelectrochemistry, and Electrochromism of Metallophthalocyanines substituted with four (2,4,5‐trimethylphenyl)ethynyl groups. ELECTROANAL 2022. [DOI: 10.1002/elan.202100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Srivishnu K, Naresh M, Laxmikanth Rao J, Giribabu L. Photo-induced intramolecular electron transfer in phenoxazine-phthalocyanine donor-acceptor systems. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Donor-Acceptor (D-A) systems based on phenoxazine – phthalocyanine (PXZ-Pc) and phenoxazine – zinc phthalocyanine (PXZ-ZnPc) have been designed and synthesized. Both D-A systems are characterized using various spectroscopic and electrochemical techniques including in-situ methods. Optical absorption studies suggest that both Soret and Q bands of these D-A systems are hypsochromically and bathochromically shifted, when compared to its individual constituents. The study supported by theoretical calculations shows clearly that there exists a negligible electronic communication in the ground state between donor phenoxazine and acceptor phthalocyanine. However, attractively, both D-A systems exhibit noteworthy fluorescence emission quenching (90–99%) of the phthalocyanine emission compared to its reference compounds. The fluorescence emission quenching featured at the excited-state intramolecular photoinduced electron transfer from ground state of phenoxazine to the excited state of phthalocyaine/zinc phthalocyanine. The rates of electron-transfer ([Formula: see text] of these D-A systems are found in the range of 5.7 × 108 to 2.8 × 109 s[Formula: see text] and are according to solvent polarity.
Collapse
Affiliation(s)
- K.S. Srivishnu
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India
| | - Madarapu Naresh
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - J. Laxmikanth Rao
- Catalysis & Fine Chemical Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India
| |
Collapse
|
50
|
Malyasova AS, Kostrova EA, Abramov IG, Maizlish VE, Koifman OI. Synthesis, acid-base interactions, and photostability of copper(ii) tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyanine. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|