1
|
Zhang X, He Z, Wang S, Zhang S, Song D. A pure near-infrared platform with dual-readout capability employing upconversion fluorescence and colorimetry for biosensing of uric acid. Talanta 2025; 291:127900. [PMID: 40056650 DOI: 10.1016/j.talanta.2025.127900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Exploring an accurate uric acid (UA) detection method is of paramount importance for early disease diagnosis. In this study, we have developed a novel near-infrared (NIR) probe that integrates upconversion nanoparticles (UCNPs) with polymetallic oxomolybdate (POM) clusters to achieve precise UA quantification. The strong absorption of POM peaking at 825 nm effectively quenched the fluorescence emission of UCNPs at 806 nm under 980 nm laser excitation through the resonance energy transfer effect. Upon introducing UA along with uricase, hydrogen peroxide generated from the catalytic reaction significantly diminished POM absorption, thereby restoring UCNP fluorescence by up to 19.5-fold. By leveraging the distinctive features of NIR dual-readout and NIR excitation, the interference from biological samples can be significantly mitigated. Consequently, the probe demonstrated excellent selectivity and sensitivity towards UA. For the colorimetric assay, the linear range for UA detection was 5-100 μM with a low detection limit of 0.283 μM, while the fluorescence method demonstrated a linear range of 1-60 μM with a detection limit as low as 11.74 nM. We successfully and accurately quantified UA in human serum, highlighting its great potential for biochemical and clinical applications.
Collapse
Affiliation(s)
- Xinglong Zhang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Zuming He
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Shuyan Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Shuai Zhang
- Xingyuan Hospital of Yulin, Yulin, 719000, PR China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China.
| |
Collapse
|
2
|
Guo W, Li K, Yu H, Chang C, Zhu J, Li Q, Jiang C. Background-free luminescent and chromatic assay for strong visual detection of creatinine. Talanta 2025; 287:127631. [PMID: 39870022 DOI: 10.1016/j.talanta.2025.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine. DNBA undergoes a specific colorimetric reaction with creatinine, quenching the green upconversion luminescence (UCL) while leaving the red UCL unaffected, thus constructing the luminescent and colorimetric sensing modes for creatinine. The designed near-infrared excited sensing system eliminates auto-fluorescence with a multi-output signal, thereby enhancing the sensitivity and convenience of creatinine detection. Under optimal conditions, the detection limit in the colorimetric mode is 26 nM, while the detection limit in the luminescent mode is 2 nM. Moreover, a portable sensing platform is further developed, demonstrating sensitive sensing performance and paving a new way for point-of-care testing (POCT) of human body fluid biomarkers.
Collapse
Affiliation(s)
- Wenshuai Guo
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Kangran Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Hao Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Caidie Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Jiawei Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Qiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Changlong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
3
|
Zhang MX, Jia T, Cheng PM, Liu WD, Long LS, Zheng LS. Yb 3+-Induced Bright Ligand Up-Conversion Luminescence in 1D Coordination Polymers. Angew Chem Int Ed Engl 2025; 64:e202501349. [PMID: 40016169 DOI: 10.1002/anie.202501349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Ln3+-induced ligand up-conversion luminescence (UCL) in coordination polymers (CPs) effectively overcomes the inherent limitations of conventional organic UCL mechanisms. However, current research on UCL in Ln-CPs has predominantly focused on the UCL of Ln3⁺ ions themselves, while investigations into Ln3⁺-induced ligand UCL is overlooked in Ln-CPs. Herein, by doping Yb3⁺ into the Ln-CPs of [Y2(FCA)6]n 1) (FCA = 9-fluorenone-2-carboxylic acid), Yb3+-doped 1D chain Ln-CPs of [Y2-2xYb2x(FCA)6]n (x = 0.2, 2) x = 0.5, 3) x = 0.7, 4) x = 0.9, 5) x = 1, 6) are prepared. Investigation of the UCL of FCA in these CPs reveals that Ln3⁺-induced ligand UCL are achieved for the first time. Notably, 4 not only displays bright UCL under both 10 and 15 W cm-2 excitation power of 980 nm laser but also achieves an absolute UCQY of 0.003 %, opening new avenues for the development of Ln-CPs as UCL materials.
Collapse
Affiliation(s)
- Ming-Xuan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lang-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Geng S, Li H, Lv Z, Zhai Y, Tian B, Luo Y, Zhou Y, Han ST. Challenges and Opportunities of Upconversion Nanoparticles for Emerging NIR Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419678. [PMID: 40237212 DOI: 10.1002/adma.202419678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/21/2025] [Indexed: 04/18/2025]
Abstract
Upconversion nanoparticles (UCNPs), incorporating lanthanide (Ln) dopants, can convert low-energy near-infrared photons into higher-energy visible or ultraviolet light through nonlinear energy transfer processes. This distinctive feature has attracted considerable attention in both fundamental research and advanced optoelectronics. Challenges such as low energy-conversion efficiency and nonradiative losses limit the performance of UCNP-based optoelectronic devices. Recent advancements including optimized core-shell structures, tailed Ln-doping concentration, and surface modifications show significant promise for improving the efficiency and stability. In addition, combining UCNPs with functional materials can broaden their applications and improve device performance, paving the way for the innovation of next-generation optoelectronics. This paper first categorizes and elaborates on various upconversion mechanisms in UCNPs, focusing on strategies to boost energy transfer efficiency and prolong luminescence. Subsequently, an in-depth discussion of the various materials that can enhance the efficiency of UCNPs and expand their functionality is provided. Furthermore, a wide range of UCNP-based optoelectronic devices is explored, and multiple emerging applications in UCNP-based neuromorphic computing are highlighted. Finally, the existing challenges and potential solutions involved in developing practical UCNPs optoelectronic devices are considered, as well as an outlook on the future of UCNPs in advanced technologies is provided.
Collapse
Affiliation(s)
- Sunyingyue Geng
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Hangfei Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| | - Ying Luo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
5
|
He X, Huang W, Zheng Y, Xu X, Wei H, Liang P, Yang X, Hu C, Zhang X, Lei B, Zhang X, Ye J, Liu Y, Zhuang J. Achieving Room-Temperature Phosphorescence in Solution Phase from Carbon Dots Confined in Nanocrystals. Angew Chem Int Ed Engl 2025; 64:e202423388. [PMID: 39907178 DOI: 10.1002/anie.202423388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Carbon dots (CDs) have attracted growing interest in the construction of room-temperature phosphorescent (RTP) materials. However, in the solution phase of CDs, it is still challenging to obtain efficient and stable phosphorescent emission due to the intense quenching effect by dissolved oxygen and solvent molecules. Herein, we report robust phosphorescence in the solution phase, achieved by encapsulating citrate-derived CDs into NaYF4 nanocrystals via a one-step method of high-temperature coprecipitation. Combined characterizations show that the triplet emission from CDs is related to the abundance of C=O in the CDs, the formation of ionic-bond networks around the CDs, and the spatial confinement and quenching inhibition effects of NaYF4 nanocrystals. Notably, the transition of CDs@NaYF4 from hydrophobicity to hydrophilicity can be easily achieved by simple surface modulation of NaYF4 nanocrystals, which allows the RTP of CDs to be maintained in either polar or nonpolar solvents. In addition, CDs@NaYF4 exhibits stable afterglow in different pH environments, suggesting its excellent stability. Finally, we demonstrated the application of CDs@NaYF4 in 3D printing, oily anti-counterfeiting patterns, and cell imaging. Our work can serve the controllable preparation of solution-phase RTP materials and their various applications.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Weilan Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Haopeng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Ping Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Xianfeng Yang
- Analytical and Testing Center, South China University of Technology, Guangzhou, 510641, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jianting Ye
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen
| |
Collapse
|
6
|
Gao W, Huang R, Dong H, Li W, Wu Z, Chen Y, Ran C. Heteroatomic molecules for coordination engineering towards advanced Pb-free Sn-based perovskite photovoltaics. Chem Soc Rev 2025; 54:1384-1428. [PMID: 39713862 DOI: 10.1039/d4cs00838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
As an ideal eco-friendly Pb-free optoelectronic material, Sn-based perovskites have made significant progress in the field of photovoltaics, and the highest power conversion efficiency (PCE) of Sn-based perovskite solar cells (PSCs) has been currently approaching 16%. In the course of development, various strategies have been proposed to improve the PCE and stability of Sn-based PSCs by solving the inherent problems of Sn2+, including high Lewis acidity and easy oxidation. Notably, the recent breakthrough comes from the development of heteroatomic coordination molecules to control the characteristics of Sn-based perovskites, which are considered to be vital for realizing efficient PSCs. In this review, the up-to-date advances in the design of heteroatomic molecules and their key functions in the fabrication of Sn-based perovskite films are comprehensively summarized. Firstly, the design principles of heteroatomic coordination molecules and their impact on the colloidal chemistry, crystallization dynamics, and defect properties of Sn-based perovskites are introduced. Then, state-of-the-art heteroatomic coordination molecules for efficient Sn-based PSCs are discussed in terms of their heteroatom types and functional groups. Lastly, we shed some light on the current challenges and future perspectives regarding the rational design of heteroatomic coordination molecules for further boosting the performance of Sn-based PSCs.
Collapse
Affiliation(s)
- Weiyin Gao
- College of New Energy, Xi'an Shiyou University, Xi'an 710065, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Rui Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - He Dong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Wangyue Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, Jiangsu, China.
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| |
Collapse
|
7
|
Kong S, Liu H, Zhang Y, Fan J, Huang W. Clinical applications of nanoprobes of high-resolution in vivo imaging. iScience 2025; 28:111459. [PMID: 39829681 PMCID: PMC11742322 DOI: 10.1016/j.isci.2024.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Currently, the primary imaging methods used in clinical diagnosis are X-ray, computed tomography (CT), ultrasound, magnetic resonance imaging (MRI), PET-CT, etc. The sensitivity and accuracy of these imaging methods bring many difficulties in clinical diagnosis; at the same time, CT, X-ray, PET-CT, etc. can cause radiation to the human body; some invasive operations of the gold standard bring much pain to the patients. Some of these tests are costly and do not allow real-time in vivo imaging (IVI). For these reasons, a new field of nanoprobes is gradually being developed in the clinical direction. Nanoprobes are known for their noninvasive, highly sensitive, real-time IVI and can even be expanded to intracellular imaging. This paper introduces the mainstream nanomaterial probes and reviews them regarding imaging means, imaging principles, biosafety, and clinical application effects.
Collapse
Affiliation(s)
- Shuning Kong
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zeng J, Huang X, Yang Y, Wang J, Shi Y, Li H, Hu N, Yu B, Mu J. Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:701-710. [PMID: 39680881 DOI: 10.1021/acsami.4c18656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.
Collapse
Affiliation(s)
- Junyi Zeng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xinbo Huang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- DEYUE Skin Dermatology Clinic, Shenzhen 518036, China
| | - Yajie Yang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jieyi Wang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yuanchao Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
9
|
Liu Y, Li J, Xiahou J, Liu Z. Recent Advances in NIR or X-ray Excited Persistent Luminescent Materials for Deep Bioimaging. J Fluoresc 2025; 35:179-195. [PMID: 38008861 DOI: 10.1007/s10895-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Due to their persistent luminescence, persistent luminescent (PersL) materials have attracted great interest. In the biomedical field, the use of persistent luminescent nanoparticles (PLNPs) eliminates the need for continuous in situ excitation, thereby avoiding interference from tissue autofluorescence and significantly improving the signal-to-noise ratio (SNR). Although persistent luminescence materials can emit light continuously, the luminescence intensity of small-sized nanoparticles in vivo decays quickly. Early persistent luminescent nanoparticles were mostly excited by ultraviolet (UV) or visible light and were administered for imaging purposes through ex vivo charging followed by injection into the body. Limited by the low in vivo penetration depth, UV light cannot secondary charge PLNPs that have decayed in vivo, and visible light does not penetrate deep enough to reach deep tissues, which greatly limits the imaging time of persistent luminescent materials. In order to address this issue, the development of PLNPs that can be activated by light sources with superior tissue penetration capabilities is essential. Near-infrared (NIR) light and X-rays are widely recognized as ideal excitation sources, making persistent luminescent materials stimulated by these two sources a prominent area of research in recent years. This review describes NIR and X-ray excitable persistent luminescence materials and their recent advances in bioimaging.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics (Kunshan)Co, Ltd, Kunshan, 215300, China.
| | - Junqing Xiahou
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
10
|
Shi S, Liao C, Liu Y, Liu J, Liu J, Zhang Y, Zhang Y, Mei Q. Upconverting Ultra-Thin Bi 2O 2CO 3 Nanosheets for Synergistic Photodynamic Therapy and Radiotherapy. Adv Healthc Mater 2024; 13:e2401586. [PMID: 39023386 DOI: 10.1002/adhm.202401586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Synergistic therapy has become the major therapeutic method for malignant tumors in clinical. Photodynamic therapy (PDT) and radiotherapy (RT) always combine together because of their identical anti-tumor mechanisms, that is reactive oxygen species are generated by the use of radiosensitizers after irradiation by X-ray to efficiently kill cancer cells, PDT also follows similar mechanism. Full exposure of energy-absorbing species in nanomaterials to X-ray or near-infrared light irradiation makes the energy interchange between nanomaterials and surrounding H2O or dissolved oxygen easier, however, it remains challenging. Herein, an ultrathin two-dimensional (2D) nanosheet (NS) is developed, Bi2O2CO3, doped with lanthanide ions to give out upconversion luminescence, where the high Z elements Bi, Yb, and Er promote the radio-sensitizing effect. To the surprise, lanthanide activator ions gave out completely different luminescence properties compared with traditional upconversion nanoparticles. Less dopant of Er ions in nanosheets lattice resulted in brighter red emission, which provides more efficient PDT. Under RT/PDT combined treatment, NS shows a good tumor growth-inhibiting effect. In addition, synergistic therapy requires lower radiation dose than conventional radiotherapy and lower light power than single photodynamic therapy, thus greatly reducing radiation damage caused by RT and thermal damage caused by PDT.
Collapse
Affiliation(s)
- Shuzhi Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Cheng Liao
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yufu Liu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jinming Liu
- Department of Intensive Care Unit, Zhongshan Torch Development Zone People`s Hospital, Zhongshan, Guangdong, 528436, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
11
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Wang Y, Sun G, Su Q, Xie Y, Xing F, Zhang H, Sun L. Optical Upconversion in Mononuclear Lanthanide Co-Crystal Assemblies. Chemistry 2024; 30:e202400911. [PMID: 38651349 DOI: 10.1002/chem.202400911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
In this work, we developed two kinds of co-crystal assemblies systems, consisting of discrete mononuclear Yb3+ and Er3+ and mononuclear Yb3+ and Pr3+, which can achieve Er3+ and Pr3+ upconversion luminescence, respectively, by Yb3+ sensitization under 980 nm excitation. The structure and composition of two co-crystal assemblies were determined by single crystal X-ray diffraction. By investigation of the series of two assemblies, respectively, it is found that the strongest upconversion luminescence is both obtained when the molar ratio of Yb3+ and Ln3+ (Ln=Er or Pr) is 1 : 1. The energy transfer mechanism of Er3+ assemblies is determined as energy transfer upconversion, while that of Pr3+ assemblies is determined as energy transfer upconversion and cooperative sensitization upconversion. This is the first example of Pr3+ upconversion luminescence at the molecular dimension at room temperature, which enriches the research in the field of upconversion luminescence with lanthanide complexes.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Qichen Su
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Feifei Xing
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
13
|
Wang S, Liang H, Yang Z, Wang Z, Yang B, Lu C. Direct large-scale synthesis of water-soluble and biocompatible upconversion nanoparticles for in vivo imaging. RSC Adv 2024; 14:17350-17354. [PMID: 38813132 PMCID: PMC11134336 DOI: 10.1039/d4ra03242j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Deep tissues can be optically imaged using near-infrared windows without radiation hazard. This work proposes a straightforward one-pot method for directly synthesizing water-soluble and biocompatible upconversion nanoparticles on a large scale for in vivo imaging. Safety assessment, coupled with luminescence imaging in mice, demonstrates the excellent stability and promising biological applications of the upconversion nanoparticles.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Haiyan Liang
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Zihao Yang
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Zhijie Wang
- University of Chinese Academy of Sciences, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Biao Yang
- Department of Materials Science and Engineering, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Chichong Lu
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
14
|
Li J, Xu S, Liu Y, Cao S. Luminescent/Temperature-Sensing Properties of Multifunctional Rare-Earth Upconversion Kevlar Nanofiber Composite under 1550 nm. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:740. [PMID: 38727335 PMCID: PMC11085643 DOI: 10.3390/nano14090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The unique properties of upconversion nanoparticles (UCNPs) are responsible for their diverse applications in photonic materials, medicine, analytics, and energy conversion. In this study, water-soluble rare-earth upconversion nanomaterials emitting green, yellow, and red light under 1550 nm excitation were synthesized. These nanomaterials were then integrated into water-soluble Kevlar nanofibers (KNFs) to fabricate ultra-thin composite films exhibiting favorable mechanical characteristics. The characterization of the products, along with their luminescent, mechanical, and temperature-sensing properties, was examined. The results indicate that the composite material exhibited varying colors based on the doped nanoparticles when subjected to 1550 nm excitation. The composite showed highly sensitive temperature-sensing properties, excellent luminescent characteristics, and superior mechanical strength. This study suggests that KNFs are effective carriers of UCNPs. This study offers a reference for the utilization of rare-earth upconversion in anti-counterfeiting displays, wearable health monitoring, and remote temperature sensing.
Collapse
Affiliation(s)
- Juan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (S.X.)
| | - Shengang Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (S.X.)
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Yingliang Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (S.X.)
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (S.X.)
- Engineering Department, Huanghe Science and Technology College, Zhengzhou 450063, China
| |
Collapse
|
15
|
Balhara A, Gupta SK, Sudarshan K, Patra S, Chakraborty A, Chakraborty S. ZnAl 2O 4:Er 3+ Upconversion Nanophosphor for SPECT Imaging and Luminescence Modulation via Defect Engineering. ACS APPLIED BIO MATERIALS 2024; 7:2354-2366. [PMID: 38481091 DOI: 10.1021/acsabm.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This work reports an "all-in-one" theranostic upconversion luminescence (UCL) system having potential for both diagnostic and therapeutic applications. Despite considerable efforts in designing upconversion nanoparticles (UCNPs) for multimodal imaging and tumor therapy, there are few reports investigating dual modality SPECT/optical imaging for theranostics. Especially, research focusing on in vivo biodistribution studies of intrinsically radiolabeled UCNPs after intravenous injection is of utmost importance for the potential clinical translation of such formulations. Here, we utilized the gamma emission from 169Er and 171Er radionuclides for the demonstration of radiolabeled ZnAl2O4:171/169Er3+ as a potent agent for dual-modality SPECT/optical imaging. No uptake of radio nanoformulation was detected in the skeleton after 4 h of administration, which evidenced the robust integrity of ZnAl2O4:169/171Er3+. Combining the therapeutics using the emission of β- particulates from 169Er and 171Er will be promising for the radio-theranostic application of the synthesized ZnAl2O4:169/171Er3+ nanoformulation. Cell toxicity studies of ZnAl2O4:1%Er3+ nanoparticles were examined by an MTT assay in B16F10 mouse melanoma cell lines, which demonstrated good biocompatibility. In addition, we explored the mechanism of UCL modulation via defect engineering by Bi3+ codoping in the ZnAl2O4:Er3+ upconversion nanophosphor. The UCL color tuning was successfully achieved from the red to the green region as a function of Bi3+ codoping concentrations. Further, we tried to establish a correlation of UCL tuning with the intrinsic oxygen and cation vacancy defects as a function of Bi3+ codoping concentrations with the help of electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) studies. This study contributes to building a bridge between nature of defects and UC luminescence that is crucial for the design of advanced UCNPs for theranostics.
Collapse
Affiliation(s)
- Annu Balhara
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Santosh K Gupta
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Kathi Sudarshan
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sourav Patra
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre (Medical), Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
16
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
17
|
Sheng Y, Qi H, Li N, Xie Y, Shao H, Hu Y, Li D, Ma Q, Liu G, Dong X. Wire-in-tube nanofiber as one side to construct specific-shaped Janus nanofiber with improved upconversion luminescence and tunable magnetism. J Colloid Interface Sci 2024; 655:58-69. [PMID: 37925969 DOI: 10.1016/j.jcis.2023.10.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
It is an important strategy to rationally design and construct specific-shaped microscopic nanostructures for developing poly-functional nanomaterials for different advanced applications. In this work, a novel technique combining a parallel electrospinning with a subsequent bi-crucible fluorination is advanced and utilized to facilely synthesize a brand-new peculiar one-dimensional (1D) wire-in-tube nanofiber//nanofiber shaped Janus nanofiber (WJNF) to refrain from usual complicated preparation procedures. Partition of four independent domains in the peculiar-structured Janus nanofiber is microscopically realized. The Janus nanofiber with four microscopic partitions can be applied to assemble various functions to avoid adverse mutual impacts among functions to realize multi-functionalization of the materials. As a case study, [YF3:Yb3+, Er3+@SiO2]//CoFe2O4 WJNFs with synchronous excellent upconversion luminescence and tunable magnetism are designed and constructed by the above technique. One side of the WJNF is composed of YF3:Yb3+, Er3+@SiO2 wire-in-tube nanofiber with YF3:Yb3+, Er3+ nanofiber as core layer and SiO2 as shell layer, and the other side is composed of CoFe2O4 magnetic nanofiber. YF3:Yb3+, Er3+ green upconversion luminescent nanofiber is completely separated from CoFe2O4 to fully avoid the weakening of luminescent intensity caused by the direct contact between luminescent and magnetic substances, and thus the luminescent intensity of [YF3:Yb3+, Er3+@SiO2]//CoFe2O4 WJNFs is apparently enhanced. Up-conversion luminescent intensity and magnetism of the WJNFs are modulated by tuning the contents of CoFe2O4. With the increase of CoFe2O4 content, the saturation magnetization of the WJNFs increases from 3.91 to 12.90 emu·g-1, revealing the tunable magnetism of the product. The formation mechanism of WJNFs is advanced, and a corresponding facile construction technique is established to shun complicated process, which provides theoretical guidance and technical support for the design and preparation of other poly-functional nanomaterials.
Collapse
Affiliation(s)
- Yuqi Sheng
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Haina Qi
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Ning Li
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Yunrui Xie
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Yaolin Hu
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiangting Dong
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
18
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
19
|
Grzyb T, Martín IR, Popescu R. The use of energy looping between Tm 3+ and Er 3+ ions to obtain an intense upconversion under the 1208 nm radiation and its use in temperature sensing. NANOSCALE 2024; 16:1692-1702. [PMID: 38131190 DOI: 10.1039/d3nr04418a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows. However, the most frequently used excitation laser to obtain upconversion is out of these ranges, with a wavelength of around 975 nm. In this article, we show an alternative - Tm3+/Er3+-doped NPs that can convert 1208 nm excitation radiation, which is in the range of the 2nd biological window, to visible light within the 1st biological window. The spectroscopic properties of the core@shell NaYF4:Tm3+@NaYF4 and NaYF4:Er3+,Tm3+@NaYF4 NPs revealed a complex mechanism responsible for the observed upconversion. To explain emission in the studied NPs, we propose an energy looping mechanism: a sequence of ground state absorption, energy transfers and cross-relaxation (CR) processes between Tm3+ ions. Next, the excited Tm3+ ions transfer the absorbed energy to Er3+ ions, which results in green, red and NIR emission at 526, 546, 660, 698, 802 and 982 nm. The ratio between these bands is temperature-dependent and can be used in remote optical thermometers with high relative temperature sensitivity, up to 2.37%/°C at 57 °C. The excitation and emission properties of the studied NPs fall within 1st and 2nd biological windows, making them promising candidates for studies in biological systems.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Inocencio R Martín
- Departamento de Fisica, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131 Karlsruhe, Germany
| |
Collapse
|
20
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
21
|
Sun G, Xie Y, Wang Y, Zhang H, Sun L. Upconversion Luminescence in Mononuclear Yb/Sm Co-crystal Assemblies at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202312308. [PMID: 37698110 DOI: 10.1002/anie.202312308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+ -based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuxin Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
22
|
Yin HJ, Xiao ZG, Feng Y, Yao CJ. Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5642. [PMID: 37629933 PMCID: PMC10456671 DOI: 10.3390/ma16165642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Organic lanthanide complexes have garnered significant attention in various fields due to their intriguing energy transfer mechanism, enabling the upconversion (UC) of two or more low-energy photons into high-energy photons. In comparison to lanthanide-doped inorganic nanoparticles, organic UC complexes hold great promise for biological delivery applications due to their advantageous properties of controllable size and composition. This review aims to provide a summary of the fundamental concept and recent developments of organic lanthanide-based UC materials based on different mechanisms. Furthermore, we also detail recent applications in the fields of bioimaging and solar cells. The developments and forthcoming challenges in organic lanthanide-based UC offer readers valuable insights and opportunities to engage in further research endeavors.
Collapse
Affiliation(s)
- Hong-Ju Yin
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (H.-J.Y.); (Z.-G.X.)
| | - Zhong-Gui Xiao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (H.-J.Y.); (Z.-G.X.)
| | - Yansong Feng
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
23
|
Wei H, Wu Y. Study on the Up-Conversion Luminescence and Conductivity Behavior of p-Type NiO:Yb,Er Thin Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4637. [PMID: 37444958 DOI: 10.3390/ma16134637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
In this work, Li+-doped NiO:Yb,Er thin films are obtained via pulsed laser deposition. It was found that the films exhibit high transparency in the visible region and clearly red up-conversion luminescence under 980 nm excitation. Doping with Li+ can adjust the up-conversion emission intensity of the films. Moreover, all the films have p-type conductivity with a single activation energy of around 360 meV. The sheet resistivity of the films can be improved through changing the doping concentration of Li+ ions. Taken together, 5% is the best doping concentration for the potential application of this kind of film.
Collapse
Affiliation(s)
- Haoming Wei
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yangqing Wu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
24
|
Ekner-Grzyb A, Jurga N, Venâncio C, Grzyb T, Grześkowiak BF, Lopes I. Ecotoxicity of non- and PEG-modified lanthanide-doped nanoparticles in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106548. [PMID: 37130483 DOI: 10.1016/j.aquatox.2023.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Various types of nanoparticles (NPs) have been widely investigated recently and applied in areas such as industry, the energy sector, and medicine, presenting the risk of their release into the environment. The ecotoxicity of NPs depends on several factors such as their shape and surface chemistry. Polyethylene glycol (PEG) is one of the most often used compounds for functionalisation of NP surfaces, and its presence on the surfaces of NPs may affect their ecotoxicity. Therefore, the present study aimed to assess the influence of PEG modification on the toxicity of NPs. As biological model, we chose freshwater microalgae, a macrophyte and invertebrates, which to a considerable extent enable the assessment of the harmfulness of NPs to freshwater biota. SrF2:Yb3+,Er3+ NPs were used to represent the broad group of up-converting NPs, which have been intensively investigated for medical applications. We quantified the effects of the NPs on five freshwater species representing three trophic levels: the green microalgae Raphidocelis subcapitata and Chlorella vulgaris, the macrophyte Lemna minor, the cladoceran Daphnia magna and the cnidarian Hydra viridissima. Overall, H. viridissima was the most sensitive species to NPs, which affected its survival and feeding rate. In this case, PEG-modified NPs were slightly more toxic than bare ones (non-significant results). No effects were observed on the other species exposed to the two NPs at the tested concentrations. The tested NPs were successfully imaged in the body of D. magna using confocal microscopy; both NPs were detected in the D. magna gut. The results obtained reveal that SrF2:Yb3+,Er3+ NPs can be toxic to some aquatic species; however, the structures have low toxicity effects for most of the tested species.
Collapse
Affiliation(s)
- Anna Ekner-Grzyb
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Cátia Venâncio
- CESAM & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
Xu Q, Xiao F, Xu H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends Analyt Chem 2023; 161:116999. [PMID: 36852170 PMCID: PMC9946731 DOI: 10.1016/j.trac.2023.116999] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
26
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
27
|
Liu Y, Liang Y, Lei P, Zhang Z, Chen Y. Multifunctional Superparticles for Magnetically Targeted NIR-II Imaging and Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203669. [PMID: 36414398 PMCID: PMC9839852 DOI: 10.1002/advs.202203669] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Theranostics, the combination of diagnostics and therapies, has been considered as a promising strategy for clinical cancer treatment. Nonetheless, building a smart theranostic system with multifunction for different on-demand applications still remains elusive. Herein, an easy and user-friendly microemulsion based method is developed to modularly assemble upconversion nanoparticles (UCNPs) and Fe3 O4 nanoparticles together, forming multifunctional UCNPs/Fe3 O4 superparticles with highly integrated functionalities including the 808 nm excitation for real-time NIR-II imaging, magnetic targeting, and the upconversion luminescence upon 980 nm excitation for on-demand photodynamic therapy (PDT). With a magnet placed nearby the tumor, in vivo NIR-II imaging uncovers that superparticles tend to migrate toward the tumor and exhibit intense tumor accumulation, ≈6 folds higher than that without magnetic targeting 2 h after intravenous injection. NIR laser irradiation is then used to trigger PDT, obtaining an outstanding tumor elimination under magnetic tumor targeting, which shows a high potential to be applied in targeted cancer theranostics.
Collapse
Affiliation(s)
- Yilin Liu
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026P. R. China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000P. R. China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhen Zhang
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Yongming Chen
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
28
|
Chen M, Hao J, Zhang W, Shi G, Zhang X, Cui Z, Fu P, Liu M, Qiao X, He Y, Pang X. Highly Efficient Near-Infrared Photoinduced Electron/Energy Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization via the Energy Transfer Upconversion Mechanism. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng Chen
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingyi Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Materials Engineering; Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
29
|
Zhang T, Wu S, Qin H, Wu H, Liu X, Li B, Zheng X. An Optically Controlled Virtual Microsensor for Biomarker Detection In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205760. [PMID: 36074977 DOI: 10.1002/adma.202205760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Current technologies for the real-time analysis of biomarkers in vivo, such as needle-type microelectrodes and molecular imaging methods based on exogenous contrast agents, are still facing great challenges in either invasive detection or lack of active control of the imaging probes. In this study, by combining the design concepts of needle-type microelectrodes and the fluorescence imaging method, a new technique is developed for detecting biomarkers in vivo, named as "optically controlled virtual microsensor" (OCViM). OCViM is established by the organic integration of a specially shaped laser beam and fluorescent nanoprobe, which serve as the virtual handle and sensor tip, respectively. The laser beam can trap and manipulate the nanoprobe in a programmable manner, and meanwhile excite it to generate fluorescence emission for biosensing. On this basis, fully active control of the nanoprobe is achieved noninvasively in vivo, and multipoint detection can be realized at sub-micrometer resolution by shifting a nanoprobe among multiple positions. By using OCViM, the overexpression and heterogenous distribution of biomarkers in the thrombus is studied in living zebrafish, which is further utilized for the evaluation of antithrombotic drugs. OCViM may provide a powerful tool for the mechanism study of thrombus progression and the evaluation of antithrombotic drugs.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
30
|
An R, Liang Y, Deng R, Lei P, Zhang H. Hollow nanoparticles synthesized via Ostwald ripening and their upconversion luminescence-mediated Boltzmann thermometry over a wide temperature range. LIGHT, SCIENCE & APPLICATIONS 2022; 11:217. [PMID: 35817780 PMCID: PMC9273585 DOI: 10.1038/s41377-022-00867-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 05/10/2023]
Abstract
Upconversion nanoparticles (UCNPs) with hollow structures exhibit many fascinating optical properties due to their special morphology. However, there are few reports on the exploration of hollow UCNPs and their optical applications, mainly because of the difficulty in constructing hollow structures by conventional methods. Here, we report a one-step template-free method to synthesize NaBiF4:Yb,Er (NBFYE) hollow UCNPs via Ostwald ripening under solvothermal conditions. Moreover, we also elucidate the possible formation mechanism of hollow nanoparticles (HNPs) by studying the growth process of nanoparticles in detail. By changing the contents of polyacrylic acid and H2O in the reaction system, the central cavity size of NBFYE nanoparticles can be adjusted. Benefiting from the structural characteristics of large internal surface area and high surface permeability, NBFYE HNPs exhibit excellent luminescence properties under 980 nm near-infrared irradiation. Importantly, NBFYE hollow UCNPs can act as self-referenced ratiometric luminescent thermometers under 980 nm laser irradiation, which are effective over a wide temperature range from 223 K to 548 K and have a maximum sensitivity value of 0.0065 K-1 at 514 K. Our work clearly demonstrates a novel method for synthesizing HNPs and develops their applications, which provides a new idea for constructing hollow structure UCNPs and will also encourage researchers to further explore the optical applications of hollow UCNPs.
Collapse
Affiliation(s)
- Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, 341000, Ganzhou, Jiangxi, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
31
|
Zhu W, Zhao L, Jin J, Song Y. Preparation of Core-Shell Rare Earth-Doped Upconversion Nanomaterials and Simultaneous Detection of Two Pesticides in Food. Foods 2022; 11:1485. [PMID: 35627055 PMCID: PMC9142009 DOI: 10.3390/foods11101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022] Open
Abstract
Under the excitation of a 980 nm excitation light, the fluorescence signals of the synthesized core-shell NaYF4:Yb@NaYF4:Ho and monolayer NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) were simultaneously detected at 656 and 696 nm, respectively. The two upconversion materials were coupled with anti-clothianidin and anti-imidacloprid monoclonal antibodies by the glutaraldehyde cross-linking method as signal probes. Imidacloprid (IMI) and clothianidin (CLO) could compete with antigen-conjugated amino Fe3O4 magnetic nanomaterials for binding to signaling probes, thus establishing a rapid and sensitive fluorescent immunoassay for the simultaneous detection of IMI and CLO. Under optimal conditions, the limits of detection (LOD, IC10) and sensitivity (IC50) of IMI and CLO were (0.032, 0.028) and (4.7, 2.1) ng/mL, respectively, and the linear assay ranges were at 0.032-285.75 ng/mL and 0.028-200 ng/mL, respectively. Immunoassay did not cross-react significantly with other analogs. In fruits and vegetables such as apples, oranges, peaches, cucumbers, tomatoes and peppers, the mean recoveries of IMI and CLO ranged from 83.33% to 115.02% with relative standard deviations (RSDs) of 1.9% to 9.2% and 1.2% to 9.0%, respectively. Furthermore, the results of the immunoassay correlate well with the high-performance liquid chromatography method used to detect the actual samples.
Collapse
Affiliation(s)
- Wenbo Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.Z.); (L.Z.); (J.J.)
| | - Lingyan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.Z.); (L.Z.); (J.J.)
| | - Jingyi Jin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.Z.); (L.Z.); (J.J.)
| | - Yang Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.Z.); (L.Z.); (J.J.)
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
32
|
Wu Y, Zhang Z, Chen X, Wei H, Cao B. Enhancement of up-conversion luminescence through doping Ce3+ ions in YbxEr2−xTi2O7 thin films. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Xiang G, Yang M, Liu Z, Wang Y, Jiang S, Zhou X, Li L, Ma L, Wang X, Zhang J. Near-Infrared-to-Near-Infrared Optical Thermometer BaY 2O 4: Yb 3+/Nd 3+ Assembled with Photothermal Conversion Performance. Inorg Chem 2022; 61:5425-5432. [PMID: 35332776 DOI: 10.1021/acs.inorgchem.2c00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nowadays, the construction of photothermal therapy (PTT) agents integrated with real-time thermometry for cancer treatment in deep tissues has become a research hotspot. Herein, an excellent photothermal conversion material, BaY2O4: Yb3+/Nd3+, assembled with real-time optical thermometry is developed successfully. Ultrasensitive temperature sensing is implemented through the fluorescence intensity ratio of thermally coupled Nd3+: 4Fj (j = 7/2, 5/2, and 3/2) with a maximal absolute and relative sensitivity of 68.88 and 3.29% K-1, respectively, which surpass the overwhelming majority of the same type of thermometers. Especially, a thermally enhanced Nd3+ luminescence with a factor of 180 is detected with irradiation at 980 nm, resulting from the improvement in phonon-assisted energy transfer efficiency. Meanwhile, the photothermal conversion performance of the sample is excellent enough to destroy the pathological tissues, of which the temperature can be raised to 319.3 K after 180 s of near-infrared (NIR) irradiation with an invariable power density of 13.74 mW/mm2. Besides, the NIR emission of Nd3+ can reach a depth of 7 mm in the biological tissues, as determined by an ex vivo experiment. All the results show the potential application of BaY2O4: Yb3+/Nd3+ as a deep-tissue PTT agent simultaneously equipped with photothermal conversion and temperature sensing function.
Collapse
Affiliation(s)
- Guotao Xiang
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Menglin Yang
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Zhen Liu
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Yongjie Wang
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Sha Jiang
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Xianju Zhou
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Li Li
- Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China
| | - Li Ma
- Department of Physics & Astronomy, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Xiaojun Wang
- Department of Physics & Astronomy, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Jiahua Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China
| |
Collapse
|
34
|
Zhang Z, Chen Y, Zhang Y. Self-Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103241. [PMID: 34850560 DOI: 10.1002/smll.202103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Indexed: 05/27/2023]
Abstract
In the past few decades, significant progress of the conventional upconversion nanoparticles (UCNPs) based nanoplatform has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need a UCNPs based nanoplatform having multifunctions for specific multimodal or multiplexed applications. Through self-assembly, different UCNPs or UCNPs with other materials could be combined together within an entity. It is more like an ideal UCNPs nanoplatform, a unique system with the properties defined by its individual components as well as by the morphology of the composite. Various designs can show their different desired properties depending on the application situation. This review provides a complete summary on the optimization of the synthesis method for the recently designed UCNPs assemblies and summarizes various applications, including dual-modality cell imaging, molecular delivery, detection, and programmed control therapy. The challenges and limitations the UCNPs assembly faces and the potential solutions in this field are also presented.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
35
|
Liu S, Yan L, Huang J, Zhang Q, Zhou B. Controlling upconversion in emerging multilayer core-shell nanostructures: from fundamentals to frontier applications. Chem Soc Rev 2022; 51:1729-1765. [PMID: 35188156 DOI: 10.1039/d1cs00753j] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lanthanide-based upconversion nanomaterials have recently attracted considerable attention in both fundamental research and various frontier applications owing to their excellent photon upconversion performance and favourable physicochemical properties. In particular, the emergence of multi-layer core-shell (MLCS) nanostructures offers a versatile and powerful tool to realize well-defined matrix compositions and spatial distributions of the dopant on the nanometer length scale. In contrast to the conventional nanomaterials and commonly investigated core-shell nanoparticles, the rational design of MLCS nanostructures allows us to deliberately introduce more functional properties into an upconversion system, thus providing unprecedented opportunities for the precise manipulation of energy transfer channels, the dynamic control of upconversion processes, the fine tuning of switchable emission colours and new functional integration at a single-particle level. In this review, we present a summary and discussion on the key aspects of the recent progress in lanthanide-based MLCS nanoparticles, including the manipulation of emission and lifetime, the switchable multicolour output and the lanthanide ionic interactions on the nanoscale. Benefitting from the multifunctional and versatile luminescence properties, the MLCS nanostructures exhibit great potential in diversities of frontier applications such as three-dimensional display, upconversion laser, optical memory, anti-counterfeiting, thermometry, bioimaging, and therapy. The outlook and challenges as well as perspectives for the research in MLCS nanostructure materials are also provided. This review would be greatly helpful in exploring new structural designs of lanthanide-based materials to further manipulate the upconversion phenomenon and expand their application boundaries.
Collapse
Affiliation(s)
- Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
36
|
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochim Acta 2022; 189:109. [PMID: 35175435 DOI: 10.1007/s00604-022-05180-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 01/26/2023]
Abstract
Various fluctuations of intracellular ions, biomolecules, and other conditions in the physiological environment play crucial roles in fundamental biological processes. These factors are of great importance for analysis in biomedical detection. Nevertheless, developments of the simple, rapid, and accurate proof for specific detection still encounter major challenges. Upconversion nanoparticles (UCNPs), which could absorb multiple low-energy near-infrared light (NIR) photon excitation and emits high-energy photons caused by anti-Stokes shift, show unique upconversion luminescence (UCL) properties, for example, sharp emission band, high physicochemical stability like near-zero photobleaching, photo blinking in biological tissues, and long luminescence lifetime. Furthermore, the NIR used for the light source to excite UCNPs enable lower photo-damage effect and deeper penetration of tissue, and in the meantime, it can avoid the auto-fluorescence and light scattering from biological tissue interference. Thus, the lanthanide-doped UCNP-based functional platform with controlled structure, crystalline phase, size, and multicolor emission has become an appropriate nanomaterial for bioapplications such as biosensing, bioimaging, drug release, and therapies. In this review, the recent progress about synthesis and biomedical applications of UCNPs related to sensing and bioimaging is summarized. Firstly, the different luminescence mechanisms of the upconversion process are presented. Secondly, four of the most common methods for synthesizing UCNPs are compared as well as the advantages and disadvantages of these synthetic routes. Meanwhile, the surface modification of lanthanide-doped UCNPs was introduced to pave the way for their biochemistry applications. Next, this review detailed the biological applications of lanthanide-doped UCNPs, particularly in bioimaging, including UCL and multi-modal imaging and biosensing (monitoring intracellular ions and biomolecules). Finally, the challenges and future perspectives in materials science and biomedical fields of UCNPs are concluded: the low quantum yield of the upconversion process should be considered when they are executed as imaging contrast agents. And the biosafety of lanthanide-doped UCNPs needs to be evaluated.
Collapse
|
37
|
Li Y, Jiang C, Chen X, Jiang Y, Yao C. Yb 3+-Doped Two-Dimensional Upconverting Tb-MOF Nanosheets with Luminescence Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8343-8352. [PMID: 35104398 DOI: 10.1021/acsami.2c00160] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we synthesized a Yb3+-doped two-dimensional (2-D) upconverting Tb metal-organic framework (Tb-MOF) (hereinafter referred to as Tb-UCMOF) by a one-step solvothermal method. The synthesized Tb-UCMOF is composed of stacks of 2-D nanosheets with an average width distributed between 250 and 300 nm, and these nanosheets can be exfoliated by a simple liquid ultrasound method. The structural characteristics of this flaky particle accumulation are confirmed by the type IV adsorption-desorption isotherm with a H3-type adsorption hysteresis loop, and the Brunauer-Emmett-Teller surface of Tb-UCMOF is 143.9257 m2·g-1. Tb-UCMOF has characteristic emissions of Tb3+ which are located at 490, 545, 585, and 621 nm under 980 nm excitation. The upconverting luminescence mechanism is attributed to that Yb3+ absorbs multiple photons and transfers the energy to Tb3+, causing its 4f electrons to jump to the excited state, and then the upconverting emissions are obtained when electrons return to the ground state. Since the Tb-UCMOF nanosheets have high dispersibility and an obvious upconverting luminescent signal, we explored their luminescence sensing properties. The luminescence intensity is found to gradually decrease with the addition of Cu2+, the linear range of Cu2+ sensing is 0-1.4 μM, and the detection limit is 0.16 μM. This rapid, highly selective, and sensitive Cu2+ sensing indicates that 2-D upconverting MOF nanosheets have great application prospects in luminescence sensing and also promote the research of 2-D upconverting MOFs with specific recognition for the application of biological and environmental luminescent sensors.
Collapse
Affiliation(s)
- Yingxue Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yuanhang Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
38
|
Zhu J, Ming S, Li J, Li X, Zhu Z, Wu M, Wang X, Wei W, Ramachandraiah K, Ke F. One-pot synthesis of multifunctional radiolabeled upconversion nanorods for enhanced multimodal imaging performance. CrystEngComm 2022. [DOI: 10.1039/d2ce00100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the synthesis of radiolabeled NaYF4: Yb/Er/Gd(18/2/60mol%) upconversion nanorods (UCNRs) by one-pot solvothermal process. The synthesized UCNRs were transferred to water by using poly(maleic anhydride-alt-1-octadecene)-mPEG 5000 (C18PMH-PEG). Subsequently...
Collapse
|
39
|
Wen C, Yin F, Cheng Y, Yu H, Sun YQ, Yin XB. Construction of NaYF 4 Library for Morphology-Controlled Multimodality Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103206. [PMID: 34608755 DOI: 10.1002/smll.202103206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Morphology and size of the nanoparticles are highly related to the properties; establishing a library to summarize the relationship between the morphology/size and property is very helpful for associated applications. However, the NaYF4 library and thus the correlation between the morphology and property are still absent. Here NaYF4 library is presented and their morphologies and structures are illustrated at atomic scale for the first time. How about the crystal formation affects the morphology is further used to guide the property. Through rational doping, upconversion luminescence, magnetic resonance (MR) and computed tomography are investigated with the nanoprisms, nanoflowers, and nanoplates as models to reveal the effect of the size and morphology. The difference of the properties provides strong evidence on the importance of the library. In particular, the "imperfect structure" of nanoflower is observed on atomic scale and enhances the MR response. The different upconversion intensity ratio for the emissions at 475 and 693 nm is observed from doped NaYF4 with different morphology. Thus, controllable fabrication of NaYF4 with desired morphology is indispensable to achieve the optimal properties as the guidance on how to choose matrix from the library to meet the specific applications.
Collapse
Affiliation(s)
- Cong Wen
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangfei Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Cheng
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua Yu
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Qing Sun
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Zhang Z, Liu Y, Chen Y. Recent Progress in Utilizing Upconversion Nanoparticles with Switchable Emission for Programmed Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Yilin Liu
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| |
Collapse
|
41
|
Chien HW, Yang CH, Shih YT, Wang TL. Upconversion Nanoparticles Encapsulated with Molecularly Imprinted Amphiphilic Copolymer as a Fluorescent Probe for Specific Biorecognition. Polymers (Basel) 2021; 13:3522. [PMID: 34685278 PMCID: PMC8539580 DOI: 10.3390/polym13203522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
A fluorescent probe for specific biorecognition was prepared by a facile method in which amphiphilic random copolymers were encapsulated with hydrophobic upconversion nanoparticles (UCNPs). This method quickly converted the hydrophobic UCNPs to hydrophilic UNCPs. Moreover, the self-folding ability of the amphiphilic copolymers allowed the formation of molecular imprinting polymers with template-shaped cavities. LiYF4:Yb3+/Tm3+@LiYF4:Yb3+ UCNP with up-conversion emission in the visible light region was prepared; this step was followed by the synthesis of an amphiphilic random copolymer, poly(methacrylate acid-co-octadecene) (poly(MAA-co-OD)). Combining the UCNPs and poly(MAA-co-OD) with the templates afforded a micelle-like structure. After removing the templates, UCNPs encapsulated with the molecularly imprinted polymer (MIP) (UCNPs@MIP) were obtained. The adsorption capacities of UCNPs@MIP bound with albumin and hemoglobin, respectively, were compared. The results showed that albumin was more easily bound to UCNPs@MIP than to hemoglobin because of the effect of protein conformation. The feasibility of using UCNPs@MIP as a fluorescent probe was also studied. The results showed that the fluorescence was quenched when hemoglobin was adsorbed on UCNPs@MIP; however, this was not observed for albumin. This fluorescence quenching is attributed to Förster resonance energy transfer (FRET) and overlap of the absorption spectrum of hemoglobin with the fluorescence spectrum of UCNPs@MIP. To our knowledge, the encapsulation approach for fabricating the UCNPs@MIP nanocomposite, which was further used as a fluorescent probe, might be the first report on specific biorecognition.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan; (C.-H.Y.); (Y.-T.S.)
| | - Yan-Tai Shih
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan; (C.-H.Y.); (Y.-T.S.)
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan; (C.-H.Y.); (Y.-T.S.)
| |
Collapse
|
42
|
Li T, Dong H, Hao Y, Zhang Y, Chen S, Xu M, Zhou Y. Near‐infrared Responsive Photoelectrochemical Biosensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| |
Collapse
|
43
|
Wei H, Chen X, Wu Y, Zhang Y, Xu J, Cao B. Enhanced upconversion red light emission of TiO 2:Yb,Er thin film via Mn doping. OPTICS EXPRESS 2021; 29:23159-23166. [PMID: 34614585 DOI: 10.1364/oe.430282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
TiO2:Yb,Er films with different concentrations of Mn2+ are grown on SiO2 glass substrates by pulsed laser deposition. It is found that the introduction of Mn2+ enhanced the intensity of upconversion emission. In particular, TiO2:Yb,Er thin film with 5% Mn2+ ions exhibits the brightest upconversion emission. The upconversion red emission intensity is increased by 2.5-fold than that of a TiO2:Yb,Er thin film without Mn2+ ions, which is ascribed to the multi-photon absorption and efficient exchange-energy transfer process between Er3+ and Mn2+. The high transmittance and good conductivity of the films made them possible to act as electron transport layer in solar cells.
Collapse
|
44
|
Chen C, Zheng S, Song H. Photon management to reduce energy loss in perovskite solar cells. Chem Soc Rev 2021; 50:7250-7329. [PMID: 33977928 DOI: 10.1039/d0cs01488e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the rapid development of perovskite solar cells (PSCs) over the past few years, the conversion of solar energy into electricity is not efficient enough or cost-competitive yet. The principal energy loss in the conversion of solar energy to electricity fundamentally originates from the non-absorption of low-energy photons ascribed to Shockley-Queisser limits and thermalization losses of high-energy photons. Enhancing the light-harvesting efficiency of the perovskite photoactive layer by developing efficient photo management strategies with functional materials and arrays remains a long-standing challenge. Here, we briefly review the historical research trials and future research trends to overcome the fundamental loss mechanisms in PSCs, including upconversion, downconversion, scattering, tandem/graded structures, texturing, anti-reflection, and luminescent solar concentrators. We will deeply emphasize the availability and analyze the importance of a fine device structure, fluorescence efficiency, material proportion, and integration position for performance improvement. The unique energy level structure arising from the 4fn inner shell configuration of the trivalent rare-earth ions gives multifarious options for efficient light-harvesting by upconversion and downconversion. Tandem or graded PSCs by combining a series of subcells with varying bandgaps seek to rectify the spectral mismatch. Plasmonic nanostructures function as a secondary light source to augment the light-trapping within the perovskite layer and carrier transporting layer, enabling enhanced carrier generation. Texturing the interior using controllable micro/nanoarrays can realize light-matter interactions. Anti-reflective coatings on the top glass cover of the PSCs bring about better transmission and glare reduction. Photon concentration through perovskite-based luminescent solar concentrators offers a path to increase efficiency at reduced cost and plays a role in building-integrated photovoltaics. Distinct from other published reviews, we here systematically and hierarchically present all of the photon management strategies in PSCs by presenting the theoretical possibilities and summarizing the experimental results, expecting to inspire future research in the field of photovoltaics, phototransistors, photoelectrochemical sensors, photocatalysis, and especially light-emitting diodes. We further assess the overall possibilities of the strategies based on ultimate efficiency prospects, material requirements, and developmental outlook.
Collapse
Affiliation(s)
- Cong Chen
- School of Material Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, People's Republic of China. and State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| | - Shijian Zheng
- School of Material Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, People's Republic of China.
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| |
Collapse
|