1
|
Zheng K, Ma T, Jia Y, Wang H, Li H. Colorimetric and fluorescence dual-signal sensing of L-Arginine based on TSPP-TA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125505. [PMID: 39626514 DOI: 10.1016/j.saa.2024.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/29/2025]
Abstract
L-Arginine (L-Arg) is an essential basic amino acid for human growth and development. Several health disorders can be caused when the level of L-Arg is too high or weak in the body of a human being. Therefore, the quantification of L-Arg is great importance in the field of life sciences. Based on this, 5,10,15,20-(4-sulphonatophenyl)porphyrin (TSPP) probes with excellent water solubility and high quantum yield were synthesized by one-pot method. It was applied to colorimetric and fluorescence sensing systems. The maximum fluorescence emission wavelength was obtained at 643 nm when the excitation wavelength was set at 515 nm. The fluorescence signal was "ON" state with the purple-red of TSPP solution. The introduction of tannic acid (TA) into the TSPP solution partially converted TSPP to the double protonated form (H2TPPS4-). In the reaction, electron transfer taken place, leading to a decrease in the absorbance and fluorescence emission intensity of TSPP. This resulted in a color shift of the solution from purplish-red to green, effectively turning the fluorescence signal to an "OFF" state. The absorbance and fluorescence emission intensity of the quenched TSPP were significantly recovered due to the acid-base neutralization reaction occurs between alkaline L-Arg and TA when L-Arg was added to the TSPP-TA dual-signal sensing system. The color of the solution transitioned from green to colorless. Concurrently, the fluorescence signal was activated, marking an "ON" state. Therefore, an "ON-OFF-ON" type colorimetric and fluorescence dual-signal sensing system was constructed with TSPP-TA/L-Arg. The results showed that the linear range of L-Arg in the colorimetric sensing was 3.14 μM-145.20 μM with the detection limit (LOD, S/N = 3) of 0.11 μM. In the fluorescent sensing system, the linear range of L-Arg was 1.49 μM-271.74 μM with the detection limit (LOD, S/N = 3) of 0.07 μM. This dual-signal sensing system, which combined colorimetric and fluorescence indicators, has been effectively utilized for the high-precision and sensitive detection of L-Arg in real-world samples.
Collapse
Affiliation(s)
- Kun Zheng
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China
| | - Tianfeng Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China
| | - Yanyan Jia
- QingHai Higher Vocational and Technical Institute, Haidong 810799, China
| | - Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China.
| | - Huye Li
- The 4th People's Hospital of Qinghai Province, Xining 810007, China.
| |
Collapse
|
2
|
Guo J, Haghshenas Y, Jiao Y, Kumar P, Yakobson BI, Roy A, Jiao Y, Regenauer-Lieb K, Nguyen D, Xia Z. Rational Design of Earth-Abundant Catalysts toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407102. [PMID: 39081108 DOI: 10.1002/adma.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Indexed: 10/18/2024]
Abstract
Catalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches. Additionally, biomimicry, inspired by efficient enzymes in nature, offers valuable insights. This review systematically analyses these design strategies, providing a roadmap for developing high-performance catalysts from abundant elements. Clean energy applications (water splitting, fuel cells, batteries) and green chemistry (ammonia synthesis, CO2 reduction) are targeted while delving into the fundamental principles, biomimetic approaches, and current challenges in this field. The way to a more sustainable future is paved by overcoming catalyst scarcity through rational design.
Collapse
Affiliation(s)
- Jinyang Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousof Haghshenas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yiran Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77251, USA
| | - Ajit Roy
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| | - Klaus Regenauer-Lieb
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6151, Australia
| | | | - Zhenhai Xia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Han P, Han M, Sessler JL, Lei C. Resolution of Expanded Porphyrinoids: A Path to Persistent Chirality and Appealing Chiroptical Properties. Chemistry 2023; 29:e202303058. [PMID: 37851869 DOI: 10.1002/chem.202303058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Chirality is a fundamental characteristic of nature. Expanded porphyrinoids and their analogues offer an attractive platform for delving into the intricacies of chirality. Expanded porphyrinoids comprise pyrrolic macrocycles and related heterocyclic systems. As a class, expanded porphyrinoids are widely recognized for their flexible structural features, nontrivial coordination capabilities, and intriguing optical and electronic properties. With limited exceptions, their inherent conformational flexibility coupled with a low racemization barrier allows for the facile interchange between enantiomers. As a result, achieving the effective chiral resolution of individual enantiomers and the subsequent exploration of their chiroptical properties represents a significant challenge. This review summarizes strategies used to realize the chiral resolution of expanded porphyrinoids and the understanding of intrinsic chiroptical properties that has emerged from these separation efforts. It is our hope that this review will serve not only to codify our current understanding of chiral expanded porphyrinoids, but also inspire advances in the generalized area of chiral functional materials.
Collapse
Affiliation(s)
- Puren Han
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Mutian Han
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas, 78712-1224, USA
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Wei H, Min J, Wang Y, Shen Y, Du Y, Su R, Qi W. Bioinspired porphyrin-peptide supramolecular assemblies and their applications. J Mater Chem B 2022; 10:9334-9348. [PMID: 36373597 DOI: 10.1039/d2tb01660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inspired by the hierarchical chiral assembly of porphyrin-proteins in photosynthetic systems, the hierarchical self-assembly of porphyrin-amino acids/peptides provides a novel strategy for constructing functional materials. How to artificially simulate the assembly of porphyrins, proteins, and other cofactors in the photosynthesis system to obtain persistent strong light capture, charge separation and catalytic reactions has become an important concern in the construction of biomimetic photosynthesis systems. This paper summarizes the different assembly strategies adopted in recent years, the effects of driving forces on self-assembly, and the application of porphyrin-peptides in catalysis and biomedicine, and briefly discusses the challenges and prospects for future research.
Collapse
Affiliation(s)
- Hao Wei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yaohui Du
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Li F, Long L, He YM, Li Z, Chen H, Fan QH. Manganese-Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022; 61:e202202972. [PMID: 35438237 DOI: 10.1002/anie.202202972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/23/2022]
Abstract
A unique family of chiral peraza N6 -macrocyclic ligands, which are conformationally rigid and have a tunable saddle-shaped cavity, is described. Utilizing their manganese(I) complexes, the first example of earth-abundant transition metal-catalyzed asymmetric formal anti-Markovnikov hydroamination of allylic alcohols was realized, providing a practical access to synthetically important chiral γ-amino alcohols in excellent yields and enantioselectivities (up to 99 % yield and 98 % ee). The single-crystal structure of a MnI complex indicates that the manganese atom coordinates with the chiral dialkylamine moiety in a bidentate fashion. Further DFT calculations revealed that five of the six nitrogen atoms in the ligand were engaged in multiple noncovalent interactions with Mn, an isopropanol molecule, and a β-amino ketone intermediate via coordination, hydrogen bonding, and/or CH⋅⋅⋅π interactions in the transition state, showing a remarkable role of the macrocyclic framework.
Collapse
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Mei He
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Ishizuka T, Kojima T. Recent Development of π-Expanded Porphyrin Derivatives by Peripheral Ring Fusion. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
7
|
Li F, Long L, He Y, Li Z, Chen H, Fan Q. Manganese‐Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
8
|
Guergueb M, Loiseau F, Molton F, Nasri H, Klein A. CO 2 to CO Electroreduction, Electrocatalytic H 2 Evolution, and Catalytic Degradation of Organic Dyes Using a Co(II) meso-Tetraarylporphyrin. Molecules 2022; 27:1705. [PMID: 35268805 PMCID: PMC8912110 DOI: 10.3390/molecules27051705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
The meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrinato cobalt(II) complex [Co(TMFPP)] was synthesised in 93% yield. The compound was studied by 1H NMR, UV-visible absorption, and photoluminescence spectroscopy. The optical band gap Eg was calculated to 2.15 eV using the Tauc plot method and a semiconducting character is suggested. Cyclic voltammetry showed two fully reversible reduction waves at E1/2 = -0.91 V and E1/2 = -2.05 V vs. SCE and reversible oxidations at 0.30 V and 0.98 V representing both metal-centred (Co(0)/Co(I)/Co(II)/Co(III)) and porphyrin-centred (Por2-/Por-) processes. [Co(TMFPP)] is a very active catalyst for the electrochemical formation of H2 from DMF/acetic acid, with a Faradaic Efficiency (FE) of 85%, and also catalysed the reduction of CO2 to CO with a FE of 90%. Moreover, the two triarylmethane dyes crystal violet and malachite green were decomposed using H2O2 and [Co(TMFPP)] as catalyst with an efficiency of more than 85% in one batch.
Collapse
Affiliation(s)
- Mouhieddinne Guergueb
- Faculty of Sciences of Monastir, University of Monastir, Avenue de l’Environnement, Monastir 5019, Tunisia;
| | - Frédérique Loiseau
- Département de Chimie Moléculaire (DCM), CNRS UMR 5250, Université Grenoble Alpes, F-38000 Grenoble, France; (F.L.); (F.M.)
| | - Florian Molton
- Département de Chimie Moléculaire (DCM), CNRS UMR 5250, Université Grenoble Alpes, F-38000 Grenoble, France; (F.L.); (F.M.)
| | - Habib Nasri
- Faculty of Sciences of Monastir, University of Monastir, Avenue de l’Environnement, Monastir 5019, Tunisia;
| | - Axel Klein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institute for Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|