1
|
Yu ZT. Chemical design of metal complexes for electrochemical water oxidation under acidic conditions. Dalton Trans 2025; 54:2718-2736. [PMID: 39834165 DOI: 10.1039/d4dt02874k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions. We focus on important aspects of 3d first-row metal complexes as they relate to the design of water oxidation systems and emphasize the importance of the fundamental coordination chemistry perspective in this field, which can be applied to the understanding of catalytic activity and fundamental structure-function relationships. Finally, we identified the scientific challenges that should be overcome for the future development and application of water oxidation electrochemical catalysts.
Collapse
Affiliation(s)
- Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Ping Y, Chen Y, Liu S, Dong J, Ruan Z, Liang X, Lin J. Improvement of electrocatalytic water oxidation activity of novel copper complex by modulating the axial coordination of phosphate on metal center. Dalton Trans 2024; 53:5222-5229. [PMID: 38391031 DOI: 10.1039/d3dt03409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The structure of organic ligand scaffolds of copper complexes critically affects their electrocatalytic properties toward water oxidation, which is widely regarded as the bottleneck of overall water splitting. Herein, two novel mononuclear Cu complexes, [Cu(dmabpy)](ClO4)2 (1, dmabpy = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine) and [Cu(mabpy)](ClO4)2 (2, mabpy = 6,6'-bis(methylaminomethyl)-2,2'-bipyridine), with four-coordinated distorted planar quadrilateral geometry were synthesized and explored as efficient catalysts for electrochemical oxygen evolution in phosphate buffer solution. Interestingly, complex 1 with a tertiary amine group catalyzes water oxidation with lower onset overpotential and better catalytic performance, while complex 2 containing a secondary amine fragment displays much lower catalytic activity under identical conditions. The water oxidation catalytic mechanism of the two complexes is proposed based on the electrochemical test results. Experimental methods indicate that phosphate coordinated on the Cu center of the two complexes inhibits their reaction with substrate water molecules, resulting in lower activity toward water oxidation. Electrochemical tests reveal that the structure of the coordinated nitrogen atom improves the catalytic performance of the Cu complexes by modulating the coordination of phosphate on the Cu center, indicating that a minor alteration of the coordinating nitrogen atom of the ligand has a detrimental effect on the catalytic performance of electrochemical WOCs based on transition metal complexes.
Collapse
Affiliation(s)
- Jieying Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Yezi Ping
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Yanmei Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Jinfeng Dong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xiangming Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
3
|
Zhang H, Chen B, Liu T, Brudvig GW, Wang D, Waegele MM. Infrared Spectroscopic Observation of Oxo- and Superoxo-Intermediates in the Water Oxidation Cycle of a Molecular Ir Catalyst. J Am Chem Soc 2024; 146:878-883. [PMID: 38154046 DOI: 10.1021/jacs.3c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Molecular Ir catalysts have emerged as an important class of model catalysts for understanding structure-activity relationships in water oxidation, a reaction that is central to renewable fuel synthesis. Prior efforts have mostly focused on controlling and elucidating the emergence of active species from prepared precursors. However, the development of efficient and stable molecular Ir catalysts also necessitates probing of reaction intermediates. To date, relatively little is known about the key intermediates in the cycles of the molecular Ir catalysts. Herein, we probed the catalytic cycle of a homogeneous Ir catalyst ("blue dimer") at a Au electrode/aqueous electrolyte interface by combining surface-enhanced infrared absorption spectroscopy (SEIRAS) with phase-sensitive detection (PSD). Cyclic voltammograms (CVs) from 1.4 to 1.7 VRHE (RHE = reversible hydrogen electrode) give rise to a band at ∼818 cm-1, whereas CVs from 1.4 to ≥1.85 VRHE generate an additional band at ∼1146 cm-1. Isotope labeling experiments indicate that the bands at ∼818 and ∼1146 cm-1 are attributable to oxo (IrV═O) and superoxo (IrIV-OO•) moieties, respectively. This study establishes PSD-SEIRAS as a sensitive tool for probing water oxidation cycles at electrode/electrolyte interfaces and demonstrates that the relative abundance of two key intermediates can be tuned by the thermodynamic driving force of the reaction.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
4
|
den Boer D, Hetterscheid DGH. Correlations between the Electronic Structure and Energetics of the Catalytic Steps in Homogeneous Water Oxidation Catalysis. J Am Chem Soc 2023; 145:23057-23067. [PMID: 37815483 PMCID: PMC10603781 DOI: 10.1021/jacs.3c05741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/11/2023]
Abstract
The development of an efficient electrocatalyst for the water oxidation reaction is limited by unfavorable scaling relations between catalytic intermediates, resulting in an overpotential. In contrast to heterogeneous catalysts, the electronic structure of homogeneous catalysts can be modified to a great extent due to a tailored ligand design. However, studies utilizing the tunability of organic ligands have rarely been conducted in a systematic manner and, as of yet, have not produced catalytic paths that avoid the aforementioned unfavorable scaling relations. To investigate the influence of electron-donating groups (EDGs) or electron-withdrawing groups (EWGs) on elementary steps in electrochemical water oxidation catalysis, cis-[Ru(bpy)2(H2O)]2+ (bpy = 2,2'-bipyridine) was selected as the scaffold that was modified with methyl, methoxy, chloro, and trifluoromethyl groups. This catalyst can undergo several electron transfer (ET), proton transfer (PT), and proton-coupled electron transfer (PCET) steps that were all probed experimentally. In this systematic study, it was found that PCET steps are relatively insensitive with respect to the presence of EDGs or EWGs, while the decoupled ET and PT steps are more heavily affected. However, the influence of the substituents decreases with an increasing oxidation state of Ru due to a lack of d-electrons available at the Ru center for π-backbonding to the bipyridine ligand. Therefore, the RuV/VI redox couple appears to be relatively unaffected by the substituent. Nevertheless, the implementation of EWGs can shift all oxidation events to a very narrow potential window. Not only do our findings illustrate how electronic substituents affect the entire potential energy landscape of the catalytic water oxidation reaction, but they also show that the cis-[Ru(bpy)2(H2O)]2+ compounds follow different design rules and scaling relations, as has been reported for every other oxygen evolution catalyst thus far.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
6
|
Shahid N, Singh RK, Srivastava N, Singh AK. Base-free synthesis of benchtop stable Ru(III)-NHC complexes from RuCl 3·3H 2O and their use as precursors for Ru(II)-NHC complexes. Dalton Trans 2023; 52:4176-4185. [PMID: 36892246 DOI: 10.1039/d3dt00243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A series of Ru(III)-NHC complexes, identified as [RuIII(PyNHCR)(Cl)3(H2O)] (1a-c), have been prepared, starting from RuCl3·3H2O following a base-free route. The Lewis acidic Ru(III) centre operates via a halide-assisted, electrophilic C-H activation for carbene generation. The best results were obtained with azolium salts having the I- anion, while ligand precursors with Cl-, BF4-, and PF6- gave no complex formation and those with Br- gave a product with mixed halides. The structurally simple, air and moisture-stable complexes represent rare examples of paramagnetic Ru(III)-NHC complexes. Furthermore, these benchtop stable Ru(III)-NHC complexes were shown to be excellent metal precursors for the synthesis of new [RuII(PyNHCR)(Cl)2(PPh3)2] (2a-c) and [RuII(PyNHCR)(CNCMe)I]PF6 (3a-c) complexes. All the complexes have been characterised using spectroscopic methods, and the structures of 1a, 1b, 2c, and 3a have been determined using the single-crystal X-ray diffraction technique. This work allows easy access to new Ru-NHC complexes for the study of new properties and novel applications.
Collapse
Affiliation(s)
- Nida Shahid
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Rahul Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Navdeep Srivastava
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
7
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
8
|
Hsu WC, Zeng WQ, Lu IC, Yang T, Wang YH. Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential through the Non-Innocent Ligand. CHEMSUSCHEM 2022; 15:e202201317. [PMID: 36083105 DOI: 10.1002/cssc.202201317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, dinuclear cobalt complexes (1 and 2) featuring bis(benzimidazole)pyrazolide-type ligands (H2 L and Me2 L) were prepared and evaluated as molecular electrocatalysts for water oxidation. Notably, 1 bearing a non-innocent ligand (H2 L) displayed faster catalytic turnover than 2 under alkaline conditions, and the base dependence of water oxidation and kinetic isotope effect analysis indicated that the reaction mediated by 1 proceeded by a different mechanism relative to 2. Spectroelectrochemical, cold-spray ionization mass spectrometric and computational studies found that double deprotonation of 1 under alkaline conditions cathodically shifted the catalysis-initiating potential and further altered the turnover-limiting step from nucleophilic water attack on (H2 L)CoIII 2 (superoxo) to deprotonation of (L)CoIII 2 (OH)2 . The rate-overpotential analysis and catalytic Tafel plots showed that 1 exhibited a significantly higher rate than previously reported Ru-based dinuclear electrocatalysts at similar overpotentials. These observations suggest that using non-innocent ligands is a valuable strategy for designing effective metal-based molecular water oxidation catalysts.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Wan-Qin Zeng
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., South Dist., 402, Taichung, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., South Dist., 402, Taichung, Taiwan
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| |
Collapse
|
9
|
Zheng H, Ye H, Xu T, Zheng K, Xie X, Zhu B, Wang X, Lin J, Ruan Z. Electrochemical water oxidation catalyzed by a mononuclear cobalt complex of a pentadentate ligand: the critical effect of the borate anion. NEW J CHEM 2022. [DOI: 10.1039/d2nj01154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt complex is found as a homogeneous water oxidation electrocatalyst. Electrochemical examinations indicate that the implementation of proton-couple electron transfer process and formation of O–O bond are assisted by borate anion.
Collapse
Affiliation(s)
- Haixia Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Hui Ye
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Tao Xu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Xinyi Xie
- Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Binghui Zhu
- Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xichao Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhijun Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|