1
|
Omoto K, Rapenne G. Design of crystalline layered coordination polymers that respond to light and heat stimuli. Dalton Trans 2025; 54:7179-7188. [PMID: 40260614 DOI: 10.1039/d5dt00156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Layered coordination polymers have attracted significant attention as a class of crystsalline materials characterized by the layer-by-layer stacking of rigid two-dimensional (2D) coordination networks. One of their remarkable features is the flexibility of their crystal structures, which allows for interlayer displacement, swelling, and exfoliation. Incorporating stimuli-responsive moieties into their structures is a promising strategy for the rational design of layered coordination polymers with targeted flexible properties and functions. Despite the challenges associated with crystal design, a variety of stimuli-responsive layered coordination polymers have been developed over the past two decades. This article provides an overview of representative examples of layered coordination polymers whose properties and functions can be modulated by photo- and thermal stimuli.
Collapse
Affiliation(s)
- Kenichiro Omoto
- Division of Chemistry and Materials Science, Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- CEMES, Université de Toulouse, CNRS, 29 Rue Marvig, F-31055 Toulouse Cedex 4, France
| |
Collapse
|
2
|
Wu J, Li M, Yang Q, Zhang B, Tang J. Two-step spin transition around room temperature in a Fe III complex. Dalton Trans 2025; 54:1231-1238. [PMID: 39618386 DOI: 10.1039/d4dt02736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Spin-crossover (SCO) at room temperature is a pivotal goal within the field of molecular magnetism. Herein, we attempt to assemble FeIII SCO complexes using a substituted Hqsal ligand, H2L (N-(8-quinolyl)-2,3-dihydroxybenzaldimine). Two complexes [Fe(HL)2]·X·2MeCN (X = BF4- for 1 and X = ClO4- for 2) were obtained and characterized. Single-crystal X-ray diffraction study reveals that the solvent and counteranion contact with the main structure through hydrogen bonding that significantly influences the SCO properties. Magnetic study reveals that both complexes show a one-step reversible spin transition below room temperature with a hysteresis loop width of 10 K for complex 1 and 4 K for complex 2. After removing the solvents, two-step SCO with a hysteresis loop width of 32 and 62 K is observed around room temperature for complex 1, while one-step SCO is found in complex 2. Magneto-structural study reveals that the differences in the SCO properties are related to the hydrogen bonding and solvent effects, which facilitates the spin transition.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Mengtao Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jinkui Tang
- Xi'an Rare Metal Materials Institute Co., Ltd, Xi'an 710016, P. R. China
| |
Collapse
|
3
|
Yang G, Ruan ZY, Chen YC, Liao PY, Wu SG, Ni ZP, Tong ML. Halogen-Driven Single-Crystal to Single-Crystal Transformation Engineering the Cluster-based Spin Crossover Frameworks. Angew Chem Int Ed Engl 2025; 64:e202414330. [PMID: 39390666 DOI: 10.1002/anie.202414330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Cluster-based spin crossover (SCO) frameworks are a new class of smart metal-organic frameworks (MOFs) with diverse structures and topologies and unique bistable physicochemical properties. Here, we report a cluster-based SCO framework [Fe3{Ag4(CN)6(H2O)}2(TPBA)3](ClO4)2 ⋅ 7DMF (1) with an extremely rare 3,4,6-T108 topology, in which the tripodal [Ag{Ag(CN)2}3(H2O)]2- clusters axially link the Fe2+ ions to form 2D→3D n-fold Borromean entangled networks. Under the guidance of reticular chemistry, the post-synthetic modification (PSM) from 1 with 3,4,6-T108 topology to [Fe3{Ag8X8(CN)6}(TPBA)3] (2_X, X=Cl, Br, I) with urk topology is firstly achieved via single-crystal to single-crystal (SCSC) transformation. Moreover, the successive SCSC transformations from 2_Cl to 2_Br and then to 2_I are realized for the first time. Their SCO behaviors are also modified by halogen-driven stepwise cluster transformations. Hence, these findings provide new strategies for the development of cluster-based SCO MOFs towards the smart functional porous materials.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
4
|
Lathion T, Deorukhkar N, Egger C, Nozary H, Piguet C. Molecular Fe(II)-Ln(III) dyads for luminescence reading of spin-state equilibria at the molecular level. Dalton Trans 2024; 53:17756-17765. [PMID: 39311462 PMCID: PMC11418352 DOI: 10.1039/d4dt01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Due to the primogenic effect, the valence shells of divalent iron Fe(II) ([Ar]3d6) and trivalent lanthanides Ln(III) ([Xe]4fn) are compact enough to induce spin-state equilibrium for the 3d-block metal and atom-like luminescence for the 4f-block partner in Fe(II)-Ln(III) dyads. In the specific case of homoleptic pseudo-octahedral [Fe(II)N6] units, programming spin crossover (SCO) around room temperature at normal pressure requires the design of unsymmetrical didentate five-membered ring chelating N∩N' ligands, in which a five-membered (benz)imidazole heterocycle (N) is connected to a six-membered pyrimidine heterocycle (N'). Benefiting from the trans influence, the facial isomer fac-[Fe(II)(N∩N')3]2+ is suitable for inducing SCO properties at room temperature in solution. Its connection to luminescent [LnN6O3] chromophores working as non-covalent podates in the triple-stranded [Fe(II)Ln(L10)3]5+ helicates (Ln = Nd, Eu) controls the facial arrangement around Fe(II). The iron-based SCO behaviour of the 3d-4f complex mirrors that programmed in the mononuclear scaffold. Because of the different electronic structures of high-spin and low-spin [Fe(II)N6] units, their associated absorption spectra are different and modulate the luminescence of the appended lanthanide luminophore via intramolecular intermetallic energy transfers. It thus becomes possible to detect the spin state of the Fe(II) center, encoded by an external perturbation (i.e. writing), by lanthanide light emission (i.e. reading) in a single molecule and without disturbance. Shifting from visible emission (Ln = Eu) to the near-infrared domain (Ln = Nd) further transforms a wavy emitted signal intensity into a linear one, a protocol highly desirable for future applications in data storage and thermometry.
Collapse
Affiliation(s)
- Timothée Lathion
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
- CNRS - CBM Rue Charles Sadron CS 80054, 45071 Orleans, Cedex 2, France
| | - Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
5
|
Wang X, Zhang N, Kou HZ. Substituent effects on spin-crossover Fe(II)N 4O 2 pyrenylhydrazone complexes. Dalton Trans 2024; 53:16592-16597. [PMID: 39101717 DOI: 10.1039/d4dt00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Multifunctional magnetic materials have broad application prospects in molecular switches and information storage. In this study, four mononuclear Fe(II) complexes are synthesized using a series of pyrenylhydrazone ligands HL1-4. Two deprotonated ligands are coordinated to the iron(II) ions in an enolic form, leading to neutral complexes FeII(Lx)2·xsol with a FeIIN4O2 octahedral coordination environment. Magnetic measurements suggest that complex Fe(L1)2·2ACE (1·2ACE, ACE = acetone) is mainly low spin below 300 K and complex Fe(L3)2·ACE (3·ACE) is high spin, whereas complexes Fe(L2)2 (2) and Fe(L4)2·6H2O (4·6H2O) exhibit gradual spin crossover behavior. The spin states of complexes 1-4 are confirmed by single-crystal X-ray diffraction analysis. The substituent effect on the magnetic properties of the complexes is significant in this system. Temperature-dependent fluorescence emission spectra show the coexistence but no coupling effect of spin crossover and fluorescence for complexes 2 and 4·6H2O.
Collapse
Affiliation(s)
- Xuan Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Nan Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Hui-Zhong Kou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
6
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Deorukhkar N, Egger C, Rosspeintner A, Piguet C. Unravelling Kinetics of Intramolecular Nd III → Fe II Energy Transfer in Spin Crossover Single Molecules: Dotting the i's and Crossing the t's. J Am Chem Soc 2024; 146:19386-19396. [PMID: 38953864 DOI: 10.1021/jacs.4c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Compared with the ripple of visible EuIII-based emission intensity induced by appended [FeIIN6] spin crossover (SCO) units, as detected in the triple-stranded [EuFe(L1)3]5+ helicate, the lanthanide-based luminescent detection of FeII spin-state equilibria could be improved significantly if the luminophore emission is shifted toward the near-infrared (NIR) domain. Replacing EuIII with NdIII in [NdFe(L1)3]5+ (i) maintains the favorable SCO properties in acetonitrile [critical temperature T1/2 = 322(2) K], (ii) saturates nonradiative vibrational relaxation processes in the 233-333 K range, and (iii) boosts the crucial intramolecular NdIII → FeII energy transfer rate processes, which are sensitive to the spin state of the FeII metallic center. Consequently, the steady-state NIR Nd(4F3/2 → 4IJ) emission of the luminophore is amplified and linearly correlated with the low-spin-[FeIIN6] and high-spin-[FeIIN6] mole fractions controlled by the SCO equilibrium. This paves the way for a straightforward and direct NIR luminescent reading/sensing of the FeII spin state in single molecules.
Collapse
Affiliation(s)
- Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
8
|
Chen YR, Ying TT, Chen YC, Liao PY, Ni ZP, Tong ML. Bidirectional photomagnetism, exciplex fluorescence and dielectric anomalies in a spin crossover Hofmann-type coordination polymer. Chem Sci 2024; 15:9240-9248. [PMID: 38903231 PMCID: PMC11186333 DOI: 10.1039/d4sc00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Stepped spin crossover (SCO) complexes with three or more spin states have promising applications in high-order data storage, multi-switches and multi-sensors. Further synergy with other functionalities, such as luminescence and dielectric properties, will provide a good chance to develop novel multifunctional SCO materials. Here, a bent pillar ligand and luminescent pyrene guest are integrated into a three-dimensional (3D) Hofmann-type metal-organic framework (MOF) [Fe(dpoda){Au(CN)2}2]·pyrene (dpoda = 2,5-di-(pyridyl)-1,3,4-oxadiazole). The magnetic data show an incomplete and two-step SCO behavior with the sequence of 1 ↔ 1/2 ↔ 1/4. The rare bi-directional light-induced excited spin-state trapping (LIESST) effect and light-induced stepped thermal relaxation after LIESST are observed. The pyrene guests interact with dpoda ligands via offset face-to-face π⋯π interactions to form intermolecular exciplex emissions. The competition between thermal quenching and stepped SCO properties results in a complicated and stepped exciplex fluorescence. Moreover, the stepped dielectric property with higher dielectric permittivity at lower temperature may be related to the more frustrated octahedral distortion parameters in the intermediate spin states. Hence, a 3D Hofmann-type MOF with bent pillar ligands and fluorescent guests illustrates an effective way for the development of multifunctional switching materials.
Collapse
Affiliation(s)
- Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ting-Ting Ying
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
9
|
Visinescu D, Shylin SI, Shova S, Novitchi G, Popescu DL, Alexandru MG. New cyanido-bridged iron(II) spin crossover coordination polymers with an unusual ladder-like topology: an alternative to Hofmann clathrates. Dalton Trans 2024; 53:9062-9071. [PMID: 38738339 DOI: 10.1039/d4dt00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Two new cyanido-bridged {FeIIMII} double chains were obtained by reacting cyanido anions [M(CN)4]2- with complex cations [FeII(tptz)]2+ (preformed in situ by mixing a hydrated tetrafluoroborate salt of iron(II) and a tptz ligand, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) having the general formula [FeII(tptz)MII(CN)4]·2H2O·CH3CN, where M = Pd (1) or Pt (2). Additionally, two molecular complexes formulated as [FeII(tptz)2][MII(CN)4]·4.25H2O, where M = Pd (3) or Pt (4), were subsequently obtained from the same reaction, as secondary products. Single crystal X-ray analysis revealed that 1 and 2 are isostructural and crystallize in the P-1 triclinic space group. Their structure consists of a double-chain with a ladder-like topology, in which cyanido-based [M(CN)4]2- metalloligands coordinate, through three CN- ligands and three [FeII(tptz)]2+ complex cations. Compounds 3 and 4 are also isostructural and crystallize in the P1̄ triclinic space group, and the X-ray structural data show the formation of [FeII(tptz)2]2+ and [MII(CN)4]2- ionic units interconnected through H-bonds and π⋯π stacking supramolecular interactions. The static DC magnetic measurements recorded in the temperature range of 2-300 K showed that 1 and 2 exhibit incomplete spin transition on cooling, which is also confirmed by single crystal XRD analysis and Mössbauer spectroscopy. Compounds 3 and 4 are diamagnetic, most likely due to the encapsulation of Fe(II) in a tight pocket formed by two tptz ligands that preserve the low-spin state in the temperature range of 2-400 K.
Collapse
Affiliation(s)
- Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Sergii I Shylin
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, EMFL, CNRS 38042 Grenoble, France.
| | - Delia-Laura Popescu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd 4-12, Bucharest 030018, Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania.
| |
Collapse
|
10
|
Chen FL, Sun YC, Liu XL, Li G, Zhang CC, Gao BH, Zhao Y, Wang XY. Spin Crossover in [Fe(qsal-5-Br q) 2] + Complexes with a Quinoline-Substituted Qsal Ligand. Inorg Chem 2024; 63:8750-8763. [PMID: 38693869 DOI: 10.1021/acs.inorgchem.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Using a quinoline substituted Qsal ligand, Hqsal-5-Brq (Hqsal-5-Brq = N-(5-bromo-8-quinolyl)salicylaldimine), four FeIII complexes, [Fe(qsal-5-Brq)2]A·CH3OH (Y = NO3- (1NO3), BF4- (2BF4), PF6- (3PF6), OTf- (4OTf), were prepared and characterized. Structure analysis revealed that complex 2BF4 contained two species (2BF4(P1̅) and 2BF4(C2/c)). In these compounds except 3PF6, the [Fe(qsal-5-Brq)2]+ cations form 1D chains through π-π interactions and other weak interactions. Adjacent chains are connected to form the 2D "Chain Layer" structures and 3D structures through various supramolecular interactions. For 3PF6, a "Dimer Chain" structure is formed from the loosely connected dimers. Magnetic studies revealed that compounds 1NO3 and 2BF4(P1̅) displayed abrupt hysteretic SCO with the transition temperature T1/2↓ = 235 K, T1/2↑ = 240 K for 1NO3 and T1/2↓ = 230 K, T1/2↑ = 235 K for 2BF4(P1̅), while compounds 3PF6 and 4OTf are in the HS state. Desolvation of the complexes significantly modifies their SCO properties: the desolvated 1NO3 and 2BF4 show a gradual SCO, desolvated 3PF6 undergoes a two-step SCO, and desolvated 4OTf exhibits a hysteretic transition. Overall, this work reported the FeIII-SCO complexes of the quinoline-substituted Hqsal ligand and highlighted the potential of these ligands for the development of interesting FeIII-SCO materials.
Collapse
Affiliation(s)
- Feng-Li Chen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Li Liu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Gang Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo-Hong Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Wu XR, Wu SQ, Liu ZK, Chen MX, Tao J, Sato O, Kou HZ. Integrating spin-dependent emission and dielectric switching in Fe II catenated metal-organic frameworks. Nat Commun 2024; 15:3961. [PMID: 38729932 PMCID: PMC11087595 DOI: 10.1038/s41467-024-48425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Mechanically interlocked molecules (MIMs) including famous catenanes show switchable physical properties and attract continuous research interest due to their potential application in molecular devices. The advantages of using spin crossover (SCO) materials here are enormous, allowing for control through diverse stimuli and highly specific functions, and enabling the transfer of the internal dynamics of MIMs from solution to solid state, leading to macroscopic applications. Herein, we report the efficient self-assembly of catenated metal-organic frameworks (termed catena-MOFs) induced by stacking interactions, through the combination of rationally selected flexible and conjugated naphthalene diimide-based bis-pyridyl ligand (BPND), [MI(CN)2]- (M = Ag or Au) and Fe2+ in a one-step strategy. The obtained bimetallic Hofmann-type SCO-MOFs [FeII(BPND){Ag(CN)2}2]·3CHCl3 (1Ag) and [FeII(BPND{Au(CN)2}2]·2CHCl3·2H2O (1Au) possess a unique three-dimensional (3D) catena-MOF constructed from the polycatenation of two-dimensional (2D) layers with hxl topology. Both complexes undergo thermal- and light-induced SCO. Significantly, abnormal increases in the maximum emission intensity and dielectric constant can be detected simultaneously with the switching of spin states. This research opens up SCO-actuated bistable MIMs that afford dual functionality of coupled fluorescence emission and dielectricity.
Collapse
Affiliation(s)
- Xue-Ru Wu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, PR China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, 102488, Beijing, PR China
| | - Ming-Xing Chen
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, PR China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, 102488, Beijing, PR China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hui-Zhong Kou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, PR China.
| |
Collapse
|
12
|
Halcrow MA, Vasili HB, Pask CM, Kulak AN, Cespedes O. Activating a high-spin iron(II) complex to thermal spin-crossover with an inert non-isomorphous molecular dopant. Dalton Trans 2024; 53:6983-6992. [PMID: 38563124 DOI: 10.1039/d4dt00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
[Fe(bpp)2][ClO4]2 (bpp = 2,6-bis{pyrazol-1-yl}pyridine; monoclinic, C2/c) is high-spin between 5-300 K, and crystallises with a highly distorted molecular geometry that lies along the octahedral-trigonal prismatic distortion pathway. In contrast, [Ni(bpp)2][ClO4]2 (monoclinic, P21) adopts a more regular, near-octahedral coordination geometry. Gas phase DFT minimisations (ω-B97X-D/6-311G**) of [M(bpp)2]2+ complexes show the energy penalty associated with that coordination geometry distortion runs as M2+ = Fe2+ (HS) ≈ Mn2+ (HS) < Zn2+ ≈ Co2+ (HS) ≲ Cu2+ ≪ Ni2+ ≪ Ru2+ (LS; HS = high-spin, LS = low-spin). Slowly crystallised solid solutions [FexNi1-x(bpp)2][ClO4]2 with x = 0.53 (1a) and 0.74 (2a) adopt the P21 lattice, while x = 0.87 (3a) and 0.94 (4a) are mixed-phase materials with the high-spin C2/c phase as the major component. These materials exhibit thermal spin-transitions at T½ = 250 ± 1 K which occurs gradually in 1a, and abruptly and with narrow thermal hysteresis in 2a-4a. The transition proceeds to 100% completeness in 1a and 2a; that is, the 26% Ni doping in 2a is enough to convert high-spin [Fe(bpp)2][ClO4]2 into a cooperative, fully SCO-active material. These results were confirmed crystallographically for 1a and 2a, which revealed similarities and differences between these materials and the previously published [FexNi1-x(bpp)2][BF4]2 series. Rapidly precipitated powders with the same compositions (1b-4b) mostly resemble 1a-4a, except that 2b is a mixed-phase material; 2b-4b also contain a fraction of amorphous solid in addition to the two crystal phases. The largest iron fraction that can be accommodated by the P21 phase in this system is 0.7 ± 0.1.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Hari Babu Vasili
- School of Physics and Astronomy, University of Leeds, W. H. Bragg Building, Leeds, LS2 9JT, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, W. H. Bragg Building, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
14
|
Capel Berdiell I, Michaels E, Munro OQ, Halcrow MA. A Survey of the Angular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-Bis(pyrazolyl)pyridine Complexes. Inorg Chem 2024; 63:2732-2744. [PMID: 38258555 PMCID: PMC10848207 DOI: 10.1021/acs.inorgchem.3c04138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Reaction of 2,4,6-trifluoropyridine with sodium 3,4-dimethoxybenzenethiolate and 2 equiv of sodium pyrazolate in tetrahydrofuran at room temperature affords 4-(3,4-dimethoxyphenylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L), in 30% yield. The iron(II) complexes [FeL2][BF4]2 (1a) and [FeL2][ClO4]2 (1b) are high-spin with a highly distorted six-coordinate geometry. This structural deviation from ideal D2d symmetry is common in high-spin [Fe(bpp)2]2+ (bpp = di{pyrazol-1-yl}pyridine) derivatives, which are important in spin-crossover materials research. The magnitude of the distortion in 1a and 1b is the largest yet discovered for a mononuclear complex. Gas-phase DFT calculations at the ω-B97X-D/6-311G** level of theory identified four minimum or local minimum structural pathways across the distortion landscape, all of which are observed experimentally in different complexes. Small distortions from D2d symmetry are energetically favorable in complexes with electron-donating ligand substituents, including sulfanyl groups, which also have smaller energy penalties associated with the lowest energy distortion pathway. Natural population analysis showed that these differences reflect greater changes to the Fe-N{pyridyl} σ-bonding as the distortion proceeds, in the presence of more electron-rich pyridyl donors. The results imply that [Fe(bpp)2]2+ derivatives with electron-donating pyridyl substituents are more likely to undergo cooperative spin transitions in the solid state. The high-spin salt [Fe(bpp)2][CF3SO3]2, which also has a strong angular distortion, is also briefly described and included in the analysis.
Collapse
Affiliation(s)
| | - Evridiki Michaels
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Orde Q. Munro
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
15
|
Li R, Levchenko G, Bartual-Murgui C, Fylymonov H, Xu W, Liu Z, Li Q, Liu B, Real JA. Anomalous Pressure Response of Temperature-Induced Spin Transition and a Pressure-Induced Spin Transition in Two-Dimensional Hofmann Coordination Polymers. Inorg Chem 2024; 63:1214-1224. [PMID: 38159054 DOI: 10.1021/acs.inorgchem.3c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Spin transition (ST) compounds have been extensively studied because of the changes in rich physicochemical properties accompanying the ST process. The study of ST mainly focuses on the temperature-induced spin transition (TIST). To further understand the ST, we explore the pressure response behavior of TIST and pressure-induced spin transition (PIST) of the 2D Hofmann-type ST compounds [Fe(Isoq)2M(CN)4] (Isoq-M) (M = Pt, Pd, Isoq = isoquinoline). The TISTs of both Isoq-Pt and Isoq-Pd compounds exhibit anomalous pressure response, where the transition temperature (T1/2) exhibits a nonlinear pressure dependence and the hysteresis width (ΔT1/2) exhibits a nonmonotonic behavior with pressure, by the synergistic influence of the intermolecular interaction and the distortion of the octahedral coordination environment. And the distortion of the octahedra under critical pressures may be the common behavior of 2D Hofmann-type ST compounds. Moreover, ΔT1/2 is increased compared with that before compression because of the partial irreversibility of structural distortion after decompression. At room temperature, both compounds exhibit completely reversible PIST. Because of the greater change in mechanical properties before and after ST, Isoq-Pt exhibits a more abrupt ST than Isoq-Pd. In addition, it is found that the hydrostatic properties of the pressure transfer medium (PTM) significantly affect the PIST due to their influence on spin-domain formation.
Collapse
Affiliation(s)
- Ruixin Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Georgiy Levchenko
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun130012, China
- Donetsk Institute of Physics and Engineering named after A. A. Galkin, Kyiv03028, Ukraine
| | - Carlos Bartual-Murgui
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| | - Hennagii Fylymonov
- Donetsk Institute of Physics and Engineering named after A. A. Galkin, Kyiv03028, Ukraine
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Jose Antonio Real
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| |
Collapse
|
16
|
Deorukhkar N, Egger C, Guénée L, Besnard C, Piguet C. Detecting Fe(II) Spin-Crossover by Modulation of Appended Eu(III) Luminescence in a Single Molecule. J Am Chem Soc 2024; 146:308-318. [PMID: 37877700 DOI: 10.1021/jacs.3c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multifunctionality in spin-crossover (SCO) devices is limited to macroscopic or nanoscopic materials because of the need for long-range effects for inducing favorable cooperativity, efficient energy migration processes, and detectable magnetization transfer. The difficult reproducibility, control, and rational design of doped materials offer some place to SCO processes, modulating the optical properties of neighboring luminescent probes in single molecules. We report here on the combination of a [FeN6] chromophore, the SCO temperature and absorption spectra of which have been tuned to induce unprecedented room-temperature modulation of Eu(III)-based line-like luminescence in the molecular triple-helical [EuFe(L2)3]5+ complex in solution.
Collapse
Affiliation(s)
- Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet. CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet. CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Feng J, Wang X, Wang L, Kfoury J, Oláh J, Zhang S, Zou L, Guo Y, Xue S. Naphthalimide-Tagged Iron(II) Spin Crossover Complex with Synergy of Ratiometric Fluorescence for Thermosensing. Inorg Chem 2024; 63:108-116. [PMID: 38113189 DOI: 10.1021/acs.inorgchem.3c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Spin crossover (SCO) materials that possess switchable and cooperative fluorescence have long focused interest in photonic sensor devices to monitor the variations in the physicochemical parameters of the external environment. However, the lack of quantified cooperativity for the SCO transition operating in isolated molecules is detrimental to short-term technological applications. In this study, a pretwisted energy D-A system combining the deep-blue naphthalimide fluorophore (donor) and the FeN6 SCO chromophore (switchable acceptor) has been developed with the formula of Fe(naph-abpt)2(NCS)2·2DMF (1), where naph-abpt is N-[3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl]-1,8-naphthalimide. Dual emission from the naphthalimide function based on its vibronic structure exhibits a different synergy effect with SCO, providing a new platform for ratiometric fluorescence thermosensing. Theoretical calculations and optical experimental results demonstrate an excellent correlation between luminescence intensity ratio signals and magnetic data of spin transition, promising a high sensitivity of the optical activity of the ligand to the spin state of the active iron(II) ions, with the maximum relative sensitivity as 0.7% K-1 around T1/2.
Collapse
Affiliation(s)
- Junchuang Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Joseph Kfoury
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lifei Zou
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University, Chifeng 024000, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
18
|
Yan FF, Liu D, Cai R, Zhao L, Mao PD, Sun HY, Meng YS, Liu T. Simultaneous magneto-dielectric transitions in a fluorescent Hofmann-type coordination polymer. Dalton Trans 2023. [PMID: 38010925 DOI: 10.1039/d3dt03186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The design of magnetic molecular materials exhibiting multiple functions has garnered significant interest owing to their potential applications in molecular switches, sensors, and data storage devices. In this study, we synthesized a two-dimensional (2D) FeII-based Hofmann-type coordination polymer, namely {Fe(DPPE)2[Ag(CN)2]2}·2EtOH (1), using a luminescent ligand 1,1-diphenyl-2,2-di(4-pyridylbiphenyl)ethylene (DPPE). Single-crystal structural analyses and magnetic measurements revealed a thermally induced spin crossover (SCO) with the transition temperature T1/2 = 231 K. Variable-temperature fluorescence emission spectra indicated the coexistence of spin crossover and fluorescence properties. Moreover, a pronounced dielectric change (Δε' = 1.2 at 0.5 kHz) was observed during the SCO process, confirming the simultaneous magnetic and dielectric switching arising from the rearrangement of 3d electrons and deformation of the FeII-centered coordination sphere. This work provides an approach to explore the interplay between magnetic, dielectric, and fluorescence properties, and holds significance for developing multifunctional molecular materials.
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Dan Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Rui Cai
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
19
|
Yang G, Wu SG, Ruan ZY, Chen YC, Xie KP, Ni ZP, Tong ML. Single-Crystal Transformation Engineering the Spin Change of Metal-Organic Frameworks via Cluster Deconstruction. Angew Chem Int Ed Engl 2023; 62:e202312685. [PMID: 37779343 DOI: 10.1002/anie.202312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
20
|
Kulmaczewski R, Halcrow MA. Iron(II) complexes of 2,6-bis(imidazo[1,2- a]pyridin-2-yl)pyridine and related ligands with annelated distal heterocyclic donors. Dalton Trans 2023; 52:14928-14940. [PMID: 37799008 DOI: 10.1039/d3dt02747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Following a published synthesis of 2,6-bis(imidazo[1,2-a]pyridin-2-yl)pyridine (L1), treatment of α,α'-dibromo-2,6-diacetylpyridine with 2 equiv. 2-aminopyrimidine or 2-aminoquinoline in refluxing acetonitrile respectively gives 2,6-bis(imidazo[1,2-a]pyrimidin-2-yl)pyridine (L2) and 2,6-bis(imidazo[1,2-a]quinolin-2-yl)pyridine (L3). Solvated crystals of [Fe(L1)2][BF4]2 (1[BF4]2) and [Fe(L2)2][BF4]2 (2[BF4]2) are mostly high-spin, although one solvate of 1[BF4]2 undergoes thermal spin-crossover on cooling. The iron coordination geometry is consistently distorted in crystals of 2[BF4]2 which may reflect the influence of intramolecular, inter-ligand N⋯π interactions on the molecular conformation. Only 1 : 1 Fe : L3 complexes were observed in solution, or isolated in the solid state; a crystal structure of [FeBr(py)2L3]Br·0.5H2O (py = pyridine) is presented. A solvate crystal structure of high-spin [Fe(L4)2][BF4]2 (L4 = 2,6-di{quinolin-2-yl}pyridine; 4[BF4]2) is also described, which exhibits a highly distorted six-coordinate geometry with a helical ligand conformation. The iron(II) complexes are high-spin in solution at room temperature, but 1[BF4]2 and 2[BF4]2 undergo thermal spin-crossover equilibria on cooling. All the compounds exhibit a ligand-based emission in solution at room temperature. Gas phase DFT calculations mostly reproduce the spin state properties of the complexes, but show small anomalies attributed to intramolecular, inter-ligand dispersion interactions in the sterically crowded molecules.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| |
Collapse
|
21
|
Sun YC, Chen FL, Wang KJ, Zhao Y, Wei HY, Wang XY. Hysteretic Spin Crossover with High Transition Temperatures in Two Cobalt(II) Complexes. Inorg Chem 2023; 62:14863-14872. [PMID: 37676750 DOI: 10.1021/acs.inorgchem.3c01188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cooperative spin crossover transitions with thermal hysteresis loops are rarely observed in cobalt(II) complexes. Herein, two new mononuclear cobalt(II) complexes with hysteretic spin crossover at relatively high temperatures (from 320 to 400 K), namely, [Co(terpy-CH2OH)2]·X2 (terpy-CH2OH = 4'-(hydroxymethyl)-2,2';6',2″-terpyridine, X = SCN-(1) and SeCN- (2)), have been synthesized and characterized structurally and magnetically. Both compounds are mononuclear CoII complexes with two chelating terpy-CH2OH ligands. Magnetic measurements revealed the existence of the hysteretic SCO transitions for both complexes. For compound 1, a one-step transition with T1/2↑= 334.5 K was observed upon heating, while a two-step transition is observed upon cooling with T1/2↓(1) = 329.3 K and T1/2↓(2) = 324.1 K (at a temperature sweep rate of 5 K/min). As for compound 2, a hysteresis loop with a width of 5 K (T1/2↓ = 391.6 K and T1/2↑ = 396.6 K, at a sweep rate of 5 K/min) can be observed. Thanks to the absence of the crystallized lattice solvents, their single crystals are stable enough at high temperatures for the structure determination at both spin states, which reveals that the hysteretic SCO transitions in both complexes originate from the crystallographic phase transitions involving a thermally induced order-disorder transition of the dangling -CH2OH groups in the ligand. This work shows that the modification of the terpy ligand has an important effect on the magnetic properties of the resulting cobalt(II) complexes.
Collapse
Affiliation(s)
- Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Li Chen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang-Jie Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Yan FF, Jiang WJ, Yao NT, Mao PD, Zhao L, Sun HY, Meng YS, Liu T. Manipulating fluorescence by photo-switched spin-state conversions in an iron(ii)-based SCO-MOF. Chem Sci 2023; 14:6936-6942. [PMID: 37389243 PMCID: PMC10306093 DOI: 10.1039/d3sc01217d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Manipulating fluorescence by photo-switched spin-state conversions is an attractive prospect for applications in smart magneto-optical materials and devices. The challenge is how to modulate the energy transfer paths of the singlet excited state by light-induced spin-state conversions. In this work, a spin crossover (SCO) FeII-based fluorophore was embedded into a metal-organic framework (MOF) to tune the energy transfer paths. Compound 1 {Fe(TPA-diPy)[Ag(CN)2]2}·2EtOH (1) has an interpenetrated Hofmann-type structure, wherein the FeII ion is coordinated by a bidentate fluorophore ligand (TPA-diPy) and four cyanide nitrogen atoms and acts as the fluorescent-SCO unit. Magnetic susceptibility measurements revealed that 1 underwent an incomplete and gradual spin crossover with T1/2 = 161 K. Photomagnetic studies confirmed photo-induced spin state conversions between the low-spin (LS) and high-spin (HS) states, where the irradiation of 532 and 808 nm laser lights converted the LS and HS states to the HS and LS states, respectively. Variable-temperature fluorescence spectra study revealed an anomalous decrease in emission intensity upon the HS → LS transition, confirming the synergetic coupling between the fluorophore and SCO units. Alternating irradiation of 532 and 808 nm laser lights resulted in reversible fluorescence intensity changes, confirming spin state-controlled fluorescence in the SCO-MOF. Photo-monitored structural analyses and UV-vis spectroscopic studies demonstrated that the photo-induced spin state conversions changed energy transfer paths from the TPA fluorophore to the metal-centered charge transfer bands, ultimately leading to the switching of fluorescence intensities. This work represents a new prototype compound showing bidirectional photo-switched fluorescence by manipulating the spin states of iron(ii).
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
23
|
Li G, Stefanczyk O, Kumar K, Mineo Y, Nakabayashi K, Ohkoshi SI. Low-Frequency Sub-Terahertz Absorption in Hg II -XCN-Fe II (X=S, Se) Coordination Polymers. Angew Chem Int Ed Engl 2023; 62:e202214673. [PMID: 36522797 DOI: 10.1002/anie.202214673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Self-assembly FeII complexes of phenazine (Phen), quinoxaline (Qxn), and 4,4'-trimethylenedipyridine (Tmp) with tetrahedral building blocks of [HgII (XCN)4 ]2- (X=S or Se) formed six new high-dimensional frameworks with the general formula of [Fe(L)m ][Hg(XCN)4 ]⋅solvents (L=Phen, m/X=2/S, 1; L=Qxn, m/X=2/S, 2; L=Qxn, m/X=1/S, 3; L=Qxn, m/X=1/Se, 3-Se; L=Tmp, m/X=1/S, 4; and L=Tmp, m/X=1/Se, 4-Se). 1, 3, and 3-Se show an intense sub-terahertz (sub-THz) absorbance of around 0.60 THz due to vibrations of the solvent molecules coordinated to the FeII ions and crystallization organic molecules. In addition, crystals of 1, 4, and 4-Se display low-frequency Raman scattering with exceptionally low values of 0.44, 0.51, and 0.53 THz, respectively. These results indicate that heavy metal FeII -HgII systems are promising platforms to construct sub-THz absorbers.
Collapse
Affiliation(s)
- Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuuki Mineo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
24
|
New Ferrocene-Based Metalloligand with Two Triazole Carboxamide Pendant Arms and Its Iron(II) Complex: Synthesis, Crystal Structure, 57Fe Mössbauer Spectroscopy, Magnetic Properties and Theoretical Calculations. INORGANICS 2022. [DOI: 10.3390/inorganics10110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The new ferrocene-based metalloligand bis (N-4-[3,5-di-(2-pyridyl)-1,2,4-triazoyl])ferrocene carboxamide (L) was prepared through derivatization of 1,1′-ferrocenedicarboxylic acid with 4-amino-3,5-di(pyridyl)-4H-1,2,4-triazole. The composition and purity of L in the solid state was determined with elemental analysis, FT-IR spectroscopy, and its crystal structure with single-crystal X-ray analysis, which revealed that the substituted cyclopentadienyl rings adopt the antiperiplanar conformation and the crystal structure of L is stabilized by O–H···N and N–H···O hydrogen bonds. The molecular properties of L in solution were investigated with NMR and UV-VIS spectroscopies, and cyclic voltammetry disclosed irreversible redox behavior providing one oxidation peak at E1/2 = 1.133 V vs. SHE. Furthermore, the polymeric FeII complex {Fe(L)(C(CN)3)2}n (1) was prepared and characterized with elemental analysis, FT-IR spectroscopy, 57Fe Mössbauer spectroscopy, and magnetic measurements. The last two methods confirmed that a mixture of low- and high-spin species is present in 1; however, the spin crossover properties were absent. The presented study was also supported by theoretical calculations at the DFT/TD-DFT level of theory using TPSS and TPSSh functionals.
Collapse
|