1
|
Kim SM, Sultana F, Korkmaz F, Rojekar S, Pallapati A, Ryu V, Lizneva D, Yuen T, Rosen CJ, Zaidi M. Neuroendocrinology of bone. Pituitary 2024; 27:761-777. [PMID: 39096452 DOI: 10.1007/s11102-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease-causing mutations and phenocopying human bone disease in rodents. Notably, using genetically-modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle-stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid-stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid-induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.
Collapse
Affiliation(s)
- Se-Min Kim
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Farhath Sultana
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Funda Korkmaz
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Satish Rojekar
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anusha Pallapati
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vitaly Ryu
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daria Lizneva
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tony Yuen
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Mone Zaidi
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Lawson EA. Understanding oxytocin in human physiology and pathophysiology: A path towards therapeutics. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100242. [PMID: 38974962 PMCID: PMC11225698 DOI: 10.1016/j.cpnec.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
•Oxytocin is a multifaceted hypothalamic-pituitary hormone involved in energy homeostasis, mental health, and bone metabolism.•Oxytocin deficiency in energy deficit states and in hypopituitarism is associated with worse mental health and bone health.•Oxytocin modulates appetitive neurocircuitry, improves impulse control, and reduces food intake in humans.•Defining the oxytocin system in human physiology and pathophysiology could lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, 50 Staniford Street, Suite 750B, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Plessow F, Kerem L, Wronski ML, Asanza E, O'Donoghue ML, Stanford FC, Eddy KT, Holmes TM, Misra M, Thomas JJ, Galbiati F, Muhammed M, Sella AC, Hauser K, Smith SE, Holman K, Gydus J, Aulinas A, Vangel M, Healy B, Kheterpal A, Torriani M, Holsen LM, Bredella MA, Lawson EA. Intranasal Oxytocin for Obesity. NEJM EVIDENCE 2024; 3:EVIDoa2300349. [PMID: 38815173 PMCID: PMC11427243 DOI: 10.1056/evidoa2300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Accumulating preclinical and preliminary translational evidence shows that the hypothalamic peptide oxytocin reduces food intake, increases energy expenditure, and promotes weight loss. It is currently unknown whether oxytocin administration is effective in treating human obesity. METHODS In this randomized, double-blind, placebo-controlled trial, we randomly assigned adults with obesity 1:1 (stratified by sex and obesity class) to receive intranasal oxytocin (24 IU) or placebo four times daily for 8 weeks. The primary end point was change in body weight (kg) from baseline to week 8. Key secondary end points included change in body composition (total fat mass [g], abdominal visceral adipose tissue [cm2], and liver fat fraction [proportion; range, 0 to 1; higher values indicate a higher proportion of fat]), and resting energy expenditure (kcal/day; adjusted for lean mass) from baseline to week 8 and caloric intake (kcal) at an experimental test meal from baseline to week 6. RESULTS Sixty-one participants (54% women; mean age ± standard deviation, 33.6 ± 6.2 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 36.9 ± 4.9) were randomly assigned. There was no difference in body weight change from baseline to week 8 between oxytocin and placebo groups (0.20 vs. 0.26 kg; P=0.934). Oxytocin (vs. placebo) was not associated with beneficial effects on body composition or resting energy expenditure from baseline to week 8 (total fat: difference [95% confidence interval], 196.0 g [-1036 to 1428]; visceral fat: 3.1 cm2 [-11.0 to 17.2]; liver fat: -0.01 [-0.03 to 0.01]; resting energy expenditure: -64.0 kcal/day [-129.3 to 1.4]). Oxytocin compared with placebo was associated with reduced caloric intake at the test meal (-31.4 vs. 120.6 kcal; difference [95% confidence interval], -152.0 kcal [-302.3 to -1.7]). There were no serious adverse events. Incidence and severity of adverse events did not differ between groups. CONCLUSIONS In this randomized, placebo-controlled trial in adults with obesity, intranasal oxytocin administered four times daily for 8 weeks did not reduce body weight. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT03043053.).
Collapse
Affiliation(s)
- Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Pediatric Endocrinology, Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem
| | - Marie-Louis Wronski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Elisa Asanza
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Michelle L O'Donoghue
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Fatima C Stanford
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Tara M Holmes
- Translational and Clinical Research Centers, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Madhusmita Misra
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Francesca Galbiati
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Maged Muhammed
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aluma Chovel Sella
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- The Jesse Z. and Sara Lea Shafer Institute of Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Kristine Hauser
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Sarah E Smith
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Katherine Holman
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Julia Gydus
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anna Aulinas
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona
| | - Mark Vangel
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Brian Healy
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Arvin Kheterpal
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Laura M Holsen
- Division of Women's Health, Department of Medicine and Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Miriam A Bredella
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
4
|
Iovino M, Messana T, Marucci S, Triggiani D, Giagulli VA, Guastamacchia E, Piazzolla G, De Pergola G, Lisco G, Triggiani V. The neurohypophyseal hormone oxytocin and eating behaviors: a narrative review. Hormones (Athens) 2024; 23:15-23. [PMID: 37979096 PMCID: PMC10847364 DOI: 10.1007/s42000-023-00505-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The neuropeptide oxytocin (OT) is crucial in several conditions, such as lactation, parturition, mother-infant interaction, and psychosocial function. Moreover, OT may be involved in the regulation of eating behaviors. METHODS This review briefly summarizes data concerning the role of OT in eating behaviors. Appropriate keywords and medical subject headings were identified and searched for in PubMed/MEDLINE. References of original articles and reviews were screened, examined, and selected. RESULTS Hypothalamic OT-secreting neurons project to different cerebral areas controlling eating behaviors, such as the amygdala, area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus nerve. Intracerebral/ventricular OT administration decreases food intake and body weight in wild and genetically obese rats. OT may alter food intake and the quality of meals, especially carbohydrates and sweets, in humans. DISCUSSION OT may play a role in the pathophysiology of eating disorders with potential therapeutic perspectives. In obese patients and those with certain eating disorders, such as bulimia nervosa or binge/compulsive eating, OT may reduce appetite and caloric consumption. Conversely, OT administered to patients with anorexia nervosa may paradoxically stimulate appetite, possibly by lowering anxiety which usually complicates the management of these patients. Nevertheless, OT administration (e.g., intranasal route) is not always associated with clinical benefit, probably because intranasally administered OT fails to achieve therapeutic intracerebral levels of the hormone. CONCLUSION OT administration could play a therapeutic role in managing eating disorders and disordered eating. However, specific studies are needed to clarify this issue with regard to dose-finding and route and administration time.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Simonetta Marucci
- Università Campus Biomedico, Dip. "Scienze e Tecnologie per l'Uomo e l'ambiente", Via Alvaro del Portillo, 21, Roma, Italy
| | - Domenico Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Giovanni De Pergola
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Bari, Apulia, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy.
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| |
Collapse
|
5
|
Abstract
Traditional textbook physiology has ascribed unitary functions to hormones from the anterior and posterior pituitary gland, mainly in the regulation of effector hormone secretion from endocrine organs. However, the evolutionary biology of pituitary hormones and their receptors provides evidence for a broad range of functions in vertebrate physiology. Over the past decade, we and others have discovered that thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotropic hormone, prolactin, oxytocin and arginine vasopressin act directly on somatic organs, including bone, adipose tissue and liver. New evidence also indicates that pituitary hormone receptors are expressed in brain regions, nuclei and subnuclei. These studies have prompted us to attribute the pathophysiology of certain human diseases, including osteoporosis, obesity and neurodegeneration, at least in part, to changes in pituitary hormone levels. This new information has identified actionable therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Becetti I, Singhal V, Nimmala S, Lee H, Lawson EA, Bredella MA, Misra M. Serum Oxytocin Levels Decrease 12 Months Following Sleeve Gastrectomy and Are Associated with Decreases in Lean Mass. Int J Mol Sci 2023; 24:10144. [PMID: 37373292 PMCID: PMC10299307 DOI: 10.3390/ijms241210144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Oxytocin (OXT), an anorexigenic hormone, is also bone anabolic. Further, OXT administration results in increases in lean mass (LM) in adults with sarcopenic obesity. We examine, for the first time, associations of OXT with body composition and bone endpoints in 25 youth 13-25 years old with severe obesity who underwent sleeve gastrectomy (SG) and 27 non-surgical controls (NS). Forty participants were female. Subjects underwent fasting blood tests for serum OXT and DXA for areal bone mineral density (aBMD) and body composition. At baseline, SG vs. NS had higher median body mass index (BMI) but did not differ for age or OXT levels. Over 12 months, SG vs. NS had greater reductions in BMI, LM, and fat mass (FM). OXT decreased in SG vs. NS 12 months post-SG. While baseline OXT predicted a 12-month BMI change in SG, decreases in OXT levels 12 months post-SG were not associated with decreases in weight or BMI. In SG, decreases in OXT were positively associated with decreases in LM but not with decreases in FM or aBMD. Loss of LM, a strong predictor of BMD, after bariatric surgery may reduce functional and muscular capacity. OXT pathways may be targeted to prevent LM loss following SG.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA;
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.N.); (E.A.L.)
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA;
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.N.); (E.A.L.)
- Pediatric Program, MGH Weight Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Supritha Nimmala
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.N.); (E.A.L.)
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.N.); (E.A.L.)
| | - Miriam A. Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA;
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.N.); (E.A.L.)
| |
Collapse
|
8
|
Camerino C. The Long Way of Oxytocin from the Uterus to the Heart in 70 Years from Its Discovery. Int J Mol Sci 2023; 24:ijms24032556. [PMID: 36768879 PMCID: PMC9916674 DOI: 10.3390/ijms24032556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The research program on oxytocin started in 1895, when Oliver and Schafer reported that a substance extracted from the pituitary gland elevates blood pressure when injected intravenously into dogs. Dale later reported that a neurohypophysial substance triggers uterine contraction, lactation, and antidiuresis. Purification of this pituitary gland extracts revealed that the vasopressor and antidiuretic activity could be attributed to vasopressin, while uterotonic and lactation activity could be attributed to oxytocin. In 1950, the amino-acid sequences of vasopressin and oxytocin were determined and chemically synthesized. Vasopressin (CYFQNCPRG-NH2) and oxytocin (CYIQNCPLG-NH2) differ by two amino acids and have a disulfide bridge between the cysteine residues at position one and six conserved in all vasopressin/oxytocin-type peptides. This characterization of oxytocin led to the Nobel Prize awarded in 1955 to Vincent du Vigneaud. Nevertheless, it was only 50 years later when the evidence that mice depleted of oxytocin or its receptor develop late-onset obesity and metabolic syndrome established that oxytocin regulates energy and metabolism. Oxytocin is anorexigenic and regulates the lean/fat mass composition in skeletal muscle. Oxytocin's effect on muscle is mediated by thermogenesis via a pathway initiated in the myocardium. Oxytocin involvement in thermogenesis and muscle contraction is linked to Prader-Willi syndrome in humans, opening exciting therapeutic avenues.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|