1
|
Zonooz ER, Ghezelayagh Z, Moradmand A, Aghayan HR, Shekari F, Tahamtani Y. Potential role of Sigma-1 receptor inhibition and ER stress-related pathways in upregulating definitive endoderm markers in human embryonic stem cells. Exp Cell Res 2025; 448:114557. [PMID: 40221006 DOI: 10.1016/j.yexcr.2025.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in stem cell proliferation, differentiation, and apoptosis. Sigma-1 receptor (S1R) is a unique ER chaperon protein that regulates ER stress and UPR. Here, we examine the effects of S1R inhibition on pluripotency and differentiation of human embryonic stem cells (hESCs). hESCs were treated with different doses of an S1R inhibitor (BD 1047), and we investigated the expressions of different pluripotency and lineage-specific genes. The BD-treated hESCs showed increased SRY-box transcription factor 17 (SOX17) expression [definitive endoderm-specific protein], and reductions in NANOG expression and in the number of alkaline phosphatase (ALP)-positive colonies. In silico gene expression analysis of three datasets that contained the hESCs-derived DE samples (GSE98324, GSE63592, GSE52658) was performed to investigate the ER stress-related gene expression patterns during DE differentiation. In silico analysis revealed that UPR-related genes upregulated during DE differentiation and CCL2 was the only gene present in all three DE datasets. qRT-PCR and immunostaining showed that CCL2, eIF2A, ATF4, XBP1, GRP78, DDIT3, DNAJB9, and PDIA5 which are UPR related marker genes were all upregulated in both the BD-treated hESCs and female and male hESC-derived DE cells. The results of this study suggest possible roles for S1R, ER stress-related genes, and the CCL2 pathway during differentiation of hESCs into DE. These potential new targets may improve the efficiency of protocols used to differentiate endodermal lineages.
Collapse
Affiliation(s)
- Elmira Rezaei Zonooz
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Yaser Tahamtani
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Chen M, Huang B, Su X. Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair. J Mol Med (Berl) 2025; 103:137-156. [PMID: 39821702 DOI: 10.1007/s00109-025-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.
Collapse
Affiliation(s)
- Mengbing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Zeng ZP, Lai CR, Zheng WJ. Ag 2 O-TiO 2 -NTs enhance osteogenic activity in vitro by modulating TNF-α/β-catenin signaling in bone marrow-derived mesenchymal stem cells. Chem Biol Drug Des 2024; 103:e14501. [PMID: 38453253 DOI: 10.1111/cbdd.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and β-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of β-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/β-catenin signaling.
Collapse
Affiliation(s)
- Zhan-Peng Zeng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Chang-Rong Lai
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Jie Zheng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
Chen S, Liu H, Wang Y, Wang S, Yang B, Sun D, Sun P. Overexpression of lncRNA LINC00665 inhibits the proliferation and chondroblast differentiation of bone marrow mesenchymal stem cells by targeting miR-214-3p. J Orthop Surg Res 2024; 19:2. [PMID: 38167456 PMCID: PMC10762961 DOI: 10.1186/s13018-023-04475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoarthritis is a chronic disease mainly involving the damage of articular cartilage and the whole articular tissue, which is the main cause of disability in the elderly. To explore more effective treatment measures, this study analyzed the regulatory role and molecular mechanism of lncRNA LINC00665 (LINC00665) in the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), providing a valuable theoretical basis for the pathogenesis and patient treatment of osteoarthritis. METHODS Osteoarthritis tissues and healthy tissues were obtained from 52 patients with osteoarthritis and 34 amputated patients without osteoarthritis, and the levels of LINC00665 and miR-214-3p were assessed by RT-qPCR. BMSCs were cultured and induced chondrogenic differentiation. The proliferation ability of BMSCs was detected by CCK-8 method, and the apoptosis level of BMSCs was evaluated by flow cytometry. The content of proteoglycan-glycosaminoglycan (GAG) in cartilage matrix was determined by Alcian blue staining. In addition, the binding relationship between LINC00665 and miR-214-3p was verified by luciferase reporter assay, and the molecular mechanism was further analyzed. RESULTS In osteoarthritis tissues, LINC00665 was elevated and miR-214-3p was down-regulated. With the chondrogenic differentiation of BMSCs, the level of GAG increased, and LINC00665 expression gradually decreased, while miR-214-3p level was on the contrary. After transfection of pcDNA3.1-LINC00665 in BMSCs, cell proliferation capacity was decreased, apoptosis rate was increased, and GAG content was reduced. Moreover, LINC00665 sponged miR-214-3p and negatively regulate its expression. Transfection of pcDNA3.1-LINC00665-miR-214-3p mimic changed the regulation of pcDNA3.1-LINC00665 on the viability and chondrogenic differentiation of BMSCs. CONCLUSIONS Overexpression of lncRNA LINC00665 inhibited the proliferation and chondrogenic differentiation of BMSCs by targeting miR-214-3p. The LINC00665/miR-214-3p axis may improve joint damage and alleviate the progression of osteoarthritis.
Collapse
Affiliation(s)
- Siyuan Chen
- Surgery of Spinal Degeneration and Deformity, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Hui Liu
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Yue Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Shuyuan Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Bo Yang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Di Sun
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Pengxiao Sun
- First Department of Joint, Xi'an International Medical Center Hospital, No.777, Xitai Road, Gaoxin District, Xi'an, 710000, China.
| |
Collapse
|
6
|
Huang H, Qian Y, Feng Y, Wang Y, Qian P, Xu F, Wang Q. Erxian Decoction-induced serum exosomes slowed bone marrow mesenchymal stem cell senescence through mitophagy. J Gene Med 2024; 26:e3617. [PMID: 37935422 DOI: 10.1002/jgm.3617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE Erxian Decoction (EXD) is traditionally employed in the treatment of menopausal syndromes, although its underlying mechanisms remain largely undefined. Given that the senescence of bone marrow mesenchymal stem cells (BMSCs) is intertwined with organismal aging and associated diseases, this study endeavored to elucidate the influence of EXD on aging BMSCs and uncover the mechanisms through which EXD impedes BMSC senescence. METHODS Initially, we probed the anti-senescent mechanisms of EXD on BMSCs via network pharmacology. We subsequently isolated and identified exosomes from the serum of EXD-fed rats (EXD-Exos) and administered these to H2 O2 -induced aging BMSC. Assays were conducted to assess BMSC senescence indicators and markers pertinent to mitochondrial autophagy. Treatments with mitophagy inhibitors and activators were then employed to substantiate our findings. RESULTS Protein-protein interaction (PPI) network analyses spotlighted AKT1, TP53, TNF, JUN, VEGFA, IL6, CASP3 and EGFR as focal targets. Gene Ontology and Kyoto Encylcopedia of Genes and Genomes pathway analyses underscored oxidative stress, mitophagy and cell proliferation as pivotal processes. Our cellular assays ascertained that EXD-Exos mitigated H2 O2 -induced senescence phenotypes in BMSCs. Moreover, EXD-Exos ameliorated disrupted mitophagy in BMSCs, as evidenced by enhanced cellular membrane potential and diminished reactive oxygen species levels. Intriguingly, EXD-Exos also preserved the osteogenic differentiation potential of BMSCs while curtailing their adipogenic propensity. CONCLUSION Our findings compellingly suggest that EXD counteracts BMSC senescence by fostering mitophagy.
Collapse
Affiliation(s)
- Haoqiang Huang
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Yinhua Qian
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yitao Wang
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Pingkang Qian
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Feng Xu
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
7
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
8
|
Lai B, Jiang H, Gao Y, Zhou X. Identification of ROCK1 as a novel biomarker for postmenopausal osteoporosis and pan-cancer analysis. Aging (Albany NY) 2023; 15:8873-8907. [PMID: 37683138 PMCID: PMC10522383 DOI: 10.18632/aging.205004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a prevalent bone disorder with significant global impact. The elevated risk of osteoporotic fracture in elderly women poses a substantial burden on individuals and society. Unfortunately, the current lack of dependable diagnostic markers and precise therapeutic targets for PMOP remains a major challenge. METHODS PMOP-related datasets GSE7429, GSE56814, GSE56815, and GSE147287, were downloaded from the GEO database. The DEGs were identified by "limma" packages. WGCNA and Machine Learning were used to choose key module genes highly related to PMOP. GSEA, DO, GO, and KEGG enrichment analysis was performed on all DEGs and the selected key hub genes. The PPI network was constructed through the GeneMANIA database. ROC curves and AUC values validated the diagnostic values of the hub genes in both training and validation datasets. xCell immune infiltration and single-cell analysis identified the hub genes' function on immune reaction in PMOP. Pan-cancer analysis revealed the role of the hub genes in cancers. RESULTS A total of 1278 DEGs were identified between PMOP patients and the healthy controls. The purple module and cyan module were selected as the key modules and 112 common genes were selected after combining the DEGs and module genes. Five Machine Learning algorithms screened three hub genes (KCNJ2, HIPK1, and ROCK1), and a PPI network was constructed for the hub genes. ROC curves validate the diagnostic values of ROCK1 in both the training (AUC = 0.73) and validation datasets of PMOP (AUC = 0.81). GSEA was performed for the low-ROCK1 patients, and the top enriched field included protein binding and immune reaction. DCs and NKT cells were highly expressed in PMOP. Pan-cancer analysis showed a correlation between low ROCK1 expression and SKCM as well as renal tumors (KIRP, KICH, and KIRC). CONCLUSIONS ROCK1 was significantly associated with the pathogenesis and immune infiltration of PMOP, and influenced cancer development, progression, and prognosis, which provided a potential therapy target for PMOP and tumors. However, further laboratory and clinical evidence is required before the clinical application of ROCK1 as a therapeutic target.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Xing Y, Liu C, Zhou L, Li Y, Wu D. Osteogenic effects of rapamycin on bone marrow mesenchymal stem cells via inducing autophagy. J Orthop Surg Res 2023; 18:129. [PMID: 36814286 PMCID: PMC9945701 DOI: 10.1186/s13018-023-03616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND While autophagy is essential for stem cells' self-renewal and differentiation, its effect on bone marrow mesenchymal stem cells (BMSCs) remains unclear. This study aimed to investigate the interaction between autophagy and osteogenic differentiation using rapamycin (RAPA), a classical autophagy agonist with osteo-regulatory effects. METHODS Rat BMSC's autophagy was analyzed after osteoinduction (0, 7, 14, and 21 d) by western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction (RT-qPCR). In addition, we evaluated osteogenic differentiation using alizarin red staining, alkaline phosphatase assays, and RT-qPCR/Western blotting quantification of bone sialoprotein, type 1 collagen, alkaline phosphatase, osteopontin, and Runt-related transcription factor 2 mRNA and protein levels. RESULTS The BMSC's basal autophagy level gradually decreased during osteogenic differentiation with a decrease in BECN1 level and the lipidated (LC3-II) to unlipidated (LC3-I) microtubule-associated protein 1 light chain 3 ratio and an increase in the expression of selective autophagic target p62. In contrast, it increased with increasing RAPA concentration. Furthermore, while 2 nM RAPA promoted BMSC osteogenic differentiation on days 7 and 14, 5 nM RAPA inhibited osteogenesis on days 14 and 21. Inhibition of autophagy by the inhibitor 3-methyladenine could impair RAPA's osteogenesis-enhancing effect on BMSCs. CONCLUSIONS The BMSC's basal autophagy level decreased over time during osteogenic differentiation. However, an appropriate RAPA concentration promoted BMSC osteogenic differentiation via autophagy activation.
Collapse
Affiliation(s)
- Yifeng Xing
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chaowei Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin Zhou
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yan Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Lin Y, Zhan Z, Hu M, Li H, Zhang B, Wu R, Tan S, Shan Y, Lu Z, Qin B. Inhibition of interaction between ROCK1 and Rubicon restores autophagy in endothelial cells and attenuates brain injury after prolonged ischemia. J Neurochem 2023; 164:172-192. [PMID: 36334306 DOI: 10.1111/jnc.15721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Acute ischemic stroke (AIS) induces cerebral endothelial cell death resulting in the breakdown of the blood-brain barrier (BBB). Endothelial cell autophagy acts as a protective mechanism against cell death. Autophagy is activated in the very early stages of ischemic stroke and declines after prolonged ischemia. Previous studies have shown that Rubicon can inhibit autophagy. The current study aimed to investigate whether continuous long-term ischemia can inhibit autophagy in endothelial cells after ischemic stroke by regulating the function of Rubicon and its underlying mechanism. Wild-type male C57BL/6J mice were subjected to transient middle cerebral artery occlusion (tMCAO). ROCK1, ROCK2, and NOX2 inhibitors were injected into male mice 1 h before the onset of tMCAO. Disease severity and BBB permeability were evaluated. bEnd.3 cells were cultured in vitro and subjected to oxygen-glucose deprivation (OGD). bEnd.3 cells were pretreated with or without ROCK1, ROCK2, or NOX2 inhibitors overnight and then subjected to OGD. Cell viability and permeability were also evaluated. The expression of Rubicon, ROCK1, and autophagy-related proteins were analyzed. Increased BBB permeability was correlated with Rubicon expression in tMCAO mice and Rubicon was upregulated in endothelial cells subjected to OGD. Autophagy was inhibited in endothelial cells after long-term OGD treatment and knockdown of Rubicon expression restored autophagy and viability in endothelial cells subjected to 6-h OGD. ROCK1 inhibition decreased the interaction between Beclin1 and Rubicon and restored cell viability and autophagy suppressed by 6-h OGD treatment in endothelial cells. Additionally, ROCK1 inhibition suppressed Rubicon, attenuated BBB disruption, and brain injury induced by prolonged ischemia in 6-h tMCAO mice. Prolonged ischemia induced the death of brain endothelial cells and the breakdown of the BBB, thus aggravating brain injury by increasing the interaction of ROCK1 and Rubicon with Beclin1 while inhibiting canonical autophagy. Inhibition of ROCK1 signaling in endothelial cells could be a promising therapeutic strategy to prolong the therapeutic time window in AIS.
Collapse
Affiliation(s)
- Yinyao Lin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zexin Zhan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haiyan Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sha Tan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yilong Shan
- Department of Rehabilitation Medicine, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Qin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Yi Y, Yang N, Yang Z, Tao X, Li Y. LncRNA TM1-3P Regulates Proliferation, Apoptosis and Inflammation of Fibroblasts in Osteoarthritis through miR-144-3p/ONECUT2 Axis. Orthop Surg 2022; 14:3078-3091. [PMID: 36178080 DOI: 10.1111/os.13530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study explores LncRNA TM1-3P effects on the proliferation, apoptosis, and inflammatory response of fibroblasts in osteoarthritis (OA) and its underlying mechanism. METHODS Bioinformatics was performed to analyze OA disease-related genes, miRNA profiles, and function. The targeted regulation of LncRNA TM1-3P and miR-144-3p, ONECUT2 and miR-144-3p were analyzed by dual luciferase reporter gene assay, RNA Binding Protein Immunoprecipitation (RIP), and RNA pull down. Histopathological morphology of the knee joint was observed by hematoxylin-eosin (HE) and Annona Red O/Fast Green. The expressions of mRNAs and proteins were detected by RT-qPCR, Western blot, and immunohistochemistry. Unpaired T test was used between groups, and the one-way analysis of variance of repeated measurement data was applied for multi-group comparison, following Tukey's post-test. RESULTS ONECUT2 and Smurf2 genes were significantly elevated in the osteoarthritis group compared with the normal group (P < 0.001, P < 0.001). Expressions of ONECUT2 and LncRNA TM1-3P were increased, and expression of miR-144-3p was decreased in interleukin (IL)-1β-induced human fibroblast synovial cells (hFSCs) (mRNA: 1.06 ± 0.24 vs. 3.29 ± 0.73, proteins: 0.22 ± 0.03 vs. 0.46 ± 0.22, 1.23 ± 0.22 vs. 3.76 ± 0.73, 1.06 ± 0.25 vs. 0.37 ± 0.13, P < 0.01, P < 0.001, P < 0.01, P < 0.05). Overexpression of miR-144-3p down-regulated the ONECUT2 expression, reduced cell proliferation, promoted apoptosis in hFSCs induced by IL-1β (mRNA: 0.89 ± 0.14 vs. 0.15 ± 0.01, P < 0.05; proteins: 0.46 ± 0.01 vs. 0.23 ± 0.01, P < 0.001; CCK8: 1.88 ± 0.07 vs. 1.65 ± 0.07; P < 0.05; EDU: 55.82 ± 1.44 vs 40.57 ± 2.24, P < 0.05; apoptosis: 10.57 ± 0.79 vs 16.36 ± 0.35, P < 0.0001). Overexpression of LncRNA TM1-3P up-regulated the expression of ONECUT2, promoted cell proliferation, and inhibited apoptosis (mRNA: 0.9 ± 0.09 vs 1.94 ± 0.12, P < 0.05; proteins: 0.61 ± 0.05 vs 0.76 ± 0.03, P > 0.05; CCK8: 2.07 ± 0.05 vs 2.47 ± 0.06; P < 0.01; EDU: 52.67 ± 1.17 vs 60.06 ± 3.24, P < 0.05; apoptosis: 10.57 ± 0.79 vs 16.36 ± 0.35, P < 0.001), which were reversed by the overexpression of miR-144-3p treatment (mRNA: 1.82 ± 0.07 vs 0.31 ± 0.07, P < 0.0001; proteins: 0.74 ± 0.02 vs 0.35 ± 0.01, P < 0.01; CCK8: 2.41 ± 0.01 vs 1.67 ± 0.02; P < 0.0001; EDU: 66.85 ± 2.86 vs 44.68 ± 1.97, P < 0.0001; apoptosis: 7.19 ± 0.19 vs 13.36 ± 0.53, P < 0.0001). Silencing LncRNA TM1-3P attenuated the injury of knee joint tissue, down-regulated the expression of ONECUT2, Smurf2, IL-1β, IL-6, TNF-α, and improved the expression of Rap1 in rats (0.71 ± 0.04 vs 0.48 ± 0.02, 0.68 ± 0.06 vs 0.36 ± 0.02, 0.74 ± 0.03 vs 0.49 ± 0.04, 0.78 ± 0.01 vs 0.54 ± 0.03, 0.68 ± 0.02 vs 0.4 ± 0.04, 0.24 ± 0.01 vs 0.4 ± 0.03, P < 0.05, P < 0.05, P < 0.05, P < 0.01, P < 0.01, P < 0.05). CONCLUSION LncRNA TM1-3P improved inflammation and damage of knee joints in OA rats through miR-144-3p/ONECUT2 axis, providing a new theoretical basis for gene therapy of OA.
Collapse
Affiliation(s)
- Yangfei Yi
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Ningyin Yang
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Zirui Yang
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yufei Li
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Wen Z, Sun Q, Shan Y, Xie W, Ding Y, Wang W, Ye R, Xiao W, Li Y. Endoplasmic Reticulum Stress in Osteoarthritis: A Novel Perspective on the Pathogenesis and Treatment. Aging Dis 2022; 14:283-286. [PMID: 37008062 PMCID: PMC10017163 DOI: 10.14336/ad.2022.0725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA), the most common degenerative joint disease, causes an enormous socioeconomic burden due to its disabling properties and high prevalence. Increasing evidence suggests that OA is a whole-joint disease involving cartilage degradation, synovitis, meniscal lesions, and subchondral bone remodeling. Endoplasmic reticulum (ER) stress is the accumulation of misfolded/unfolded proteins in the ER. Recent studies have found that ER stress is involved in the OA pathological changes by influencing the physiological function and survival of chondrocytes, fibroblast-like synoviocytes, synovial macrophages, meniscus cells, osteoblasts, osteoclasts, osteocytes, and bone marrow mesenchymal stem cells. Therefore, ER stress is an attractive and promising target for OA. However, although targeting ER stress has been proven to alleviate OA progression in vitro and in vivo, the treatments for OA remain in preclinical stage and require further investigation.
Collapse
Affiliation(s)
- Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yilan Ding
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Weiyang Wang
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Ruixi Ye
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Wen-feng Xiao () and Yu-sheng Li (), Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Wen-feng Xiao () and Yu-sheng Li (), Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
13
|
A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie 2021; 193:137-147. [PMID: 34742858 DOI: 10.1016/j.biochi.2021.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteoblast differentiation is an important process in skeletal development and bone remodelling. Serious bone diseases occur from any delay, defect, or imbalance in osteoblastic differentiation. Non-coding RNAs (ncRNAs) play a regulatory role in controlling the expression of proteins under physiological and pathological conditions via inhibiting mRNA translation or degrading mRNA. Circular RNAs (circRNAs) and microRNAs (miRNAs) are the long and small ncRNAs, respectively, which have been reported to regulate the expression of osteoblast marker genes directly or indirectly. Also, recent studies identified the regulatory mechanisms involving the crosstalk among circRNAs, miRNAs, and mRNAs during osteoblast differentiation. Understanding these regulatory mechanisms behind osteoblastic differentiation would help to diagnose or treat bone and bone-related disorders. Hence, the current review comprehensively discussed the regulatory relationship of circRNAs, miRNAs and mRNAs, and their functional role as circRNA-miRNA-mRNA axis in osteoblast differentiation.
Collapse
|