1
|
Rashwan E, Ibrahim N, Salem ML. Evaluation of NFKB1 and MyD88 expression levels in a sample of non-Hodgkin lymphoma patients before and during chemotherapy. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 11:386-401. [DOI: 10.1080/2314808x.2024.2347129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 12/03/2024]
Affiliation(s)
- Eman Rashwan
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Nagi Ibrahim
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
| | - Mohamed Labib Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Alfaifi A, Bahashwan S, Alsaadi M, Ageel AH, Ahmed HH, Fatima K, Malhan H, Qadri I, Almehdar H. Advancements in B-Cell Non-Hodgkin's Lymphoma: From Signaling Pathways to Targeted Therapies. Adv Hematol 2024; 2024:5948170. [PMID: 39563886 PMCID: PMC11576080 DOI: 10.1155/2024/5948170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Lymphoma is the sixth most prevalent cancer globally. Non-Hodgkin's lymphomas are the majority group of lymphomas, with B cells accounting for approximately 95% of these lymphomas. A key feature of B-cell lymphoma is the functional perturbations of essential biological pathways caused by genetic aberrations. These lead to atypical gene expression, providing cells with a selective growth advantage. Molecular analysis reveals that each lymphoma subtype has unique molecular mutations, which pose challenges in disease management and treatment. Substantial efforts over the last decade have led to the integration of this information into clinical applications, resulting in crucial insights into clinical diagnosis and targeted therapies. However, with the growing need for more effective medication development, we anticipate a deeper understanding of signaling pathways and their interactions to emerge. This review aims to demonstrate how the BCR, specific signaling pathways like PI3K/AKT/mTOR, NF-kB, and JAK/STAT are diverse in common types of B-cell lymphoma. Furthermore, it offers a detailed examination of each pathway and a synopsis of the approved or in-development targeted therapies. In conclusion, finding the activated signaling pathways is crucial for developing effective treatment plans to improve the prognosis of patients with relapsed or refractory lymphoma. Trial Registration: ClinicalTrials.gov identifier: NCT02180724, NCT02029443, NCT02477696, NCT03836261, NCT02343120, NCT04440059, NCT01882803, NCT01258998, NCT01742988, NCT02055820, NCT02285062, NCT01855750, NCT03422679, NCT01897571.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Ageel
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Hamzah H Ahmed
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Athanasopoulos M, Nomikos G, Samara P, Mastronikolis S, Tsilivigkos C, Mastronikolis NS. Non‑Hodgkin's lymphomas of the lacrimal sac: Current insights and future directions (Review). MEDICINE INTERNATIONAL 2024; 4:43. [PMID: 38912417 PMCID: PMC11190882 DOI: 10.3892/mi.2024.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Non-Hodgkin's lymphoma (NHL) of the lacrimal sac is a rare, yet clinically significant entity within the spectrum of ocular malignancies. While primary lacrimal sac lymphoma is uncommon, it poses unique diagnostic and therapeutic challenges due to its anatomical location and potential for aggressive behavior. Despite advancements being made in the current understanding and treatment of NHL, research that specifically addresses the involvement of the lacrimal sac is currently lacking. Thus, the present review aimed to provide insight into the epidemiology, clinical presentation, diagnostic modalities, histopathological features, treatment strategies and prognosis of lacrimal sac NHL. Through a methodical analysis of previous literature, the present review highlights the diverse spectrum of NHL subtypes that affect the lacrimal sac, including diffuse large B-cell lymphoma, extranodal marginal zone lymphoma, mantle cell lymphoma and follicular lymphoma. Moreover, the present review discusses the role of advanced imaging techniques in accurate staging and treatment planning, including computed tomography (CT), magnetic resonance imaging and positron emission tomography-CT. The present review also discusses evolving treatment approaches, such as surgical intervention, chemotherapy, radiotherapy, immunotherapy, combinations of the aforementioned treatments and targeted therapy. In addition, the present review highlights the significance of multidisciplinary collaboration in attaining optimal outcomes for individuals with lacrimal sac NHL. The present review aimed to provide a basis for 'further investigations into novel treatment modalities and prognostic markers that may aid in guiding personalized management strategies, ultimately improving outcomes for patients with NHL.
Collapse
Affiliation(s)
| | - Georgios Nomikos
- Department of Otolaryngology, General Hospital of Nikaia, Piraeus ‘Agios Panteleimon’, 18454 Athens, Greece
| | - Pinelopi Samara
- Children's Oncology Unit Marianna V. Vardinoyannis-ELPIDA, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | | | - Christos Tsilivigkos
- 1st Department of Otolaryngology, Hippocrateion Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | |
Collapse
|
4
|
Sezer A, Mahmutović L, Akçeşme B. In silico study of polyphenols as potential inhibitors of MALT1 protein in non-Hodgkin lymphoma. Med Oncol 2023; 41:37. [PMID: 38155268 DOI: 10.1007/s12032-023-02261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Non-Hodgkin lymphoma (NHL) is one of the most common cancer types. Deregulated signaling pathways can trigger certain NHL subtypes, including Diffuse Large B-cell lymphoma. NF-ĸB signaling pathway, which is responsible for the proliferation, growth, and survival of cells, has an essential role in lymphoma development. Although different signals control NF-ĸB activation in various lymphoid malignancies, the characteristic one is the CARD11-BCL10-MALT1 (CBM) complex. The CBM complex is responsible for the initiation of adaptive immune response. Our study is focused on the molecular docking of ten polyphenols as potential CARD11-BCL10-MALT1 complex inhibitors, essentially through MALT1 inhibition. Molecular docking was performed by Auto Dock Tools and AutoDock Vina tool, while SwissADME was used for drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of the ligands. Out of 66 ligands that were used in this study, we selected and visualized five. Selection criteria were based on the binding energy score and position of the ligands on the used protein. 2D and 3D visualizations showed interactions of ligands with the protein. Five ligands are considered potential inhibitors of MALT1, thus affecting NF-ĸB signaling pathway. However, additional in vivo and in vitro studies are required to confirm their mechanism of inhibition.
Collapse
Affiliation(s)
- Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička Cesta 15, 71000, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička Cesta 15, 71000, Sarajevo, Bosnia and Herzegovina
| | - Betül Akçeşme
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička Cesta 15, 71000, Sarajevo, Bosnia and Herzegovina.
- Department of Basic Medical Sciences, Division of Medical Biology, University of Health Sciences, 34000, Istanbul, Turkey.
| |
Collapse
|
5
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
6
|
Schmidts I, Haferlach T, Hoermann G. Precision Medicine in Therapy of Non-solid Cancer. Handb Exp Pharmacol 2023; 280:35-64. [PMID: 35989345 DOI: 10.1007/164_2022_608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development and approval of the tyrosine kinase inhibitor imatinib in 2001 has heralded the advance of directed therapy options. Today, an armamentarium of targeted therapeutics is available and enables the use of precision medicine in non-solid cancer. Precision medicine is guided by the detection of tumor-specific and targetable characteristics. These include pathogenic fusions and/or mutations, dependency on specific signaling pathways, and the expression of certain cell surface markers. Within the first part, we review approved targeted therapies for the compound classes of small molecule inhibitors, antibody-based therapies and cellular therapies. Particular consideration is given to the underlying pathobiology and the respective mechanism of action. The second part emphasizes on how biomarkers, whether they are of diagnostic, prognostic, or predictive relevance, are indispensable tools to guide therapy choice and management in precision medicine. Finally, the examples of acute myeloid leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia illustrate how integration of these biomarkers helps to tailor therapy.
Collapse
|
7
|
Salah HT, DiNardo CD, Konopleva M, Khoury JD. Potential Biomarkers for Treatment Response to the BCL-2 Inhibitor Venetoclax: State of the Art and Future Directions. Cancers (Basel) 2021; 13:2974. [PMID: 34198580 PMCID: PMC8231978 DOI: 10.3390/cancers13122974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Intrinsic apoptotic pathway dysregulation plays an essential role in all cancers, particularly hematologic malignancies. This role has led to the development of multiple therapeutic agents targeting this pathway. Venetoclax is a selective BCL-2 inhibitor that has been approved for the treatment of chronic lymphoid leukemia and acute myeloid leukemia. Given the reported resistance to venetoclax, understanding the mechanisms of resistance and the potential biomarkers of response is crucial to ensure optimal drug usage and improved patient outcomes. Mechanisms of resistance to venetoclax include alterations involving the BH3-binding groove, BCL2 gene mutations affecting venetoclax binding, and activation of alternative anti-apoptotic pathways. Moreover, various potential genetic biomarkers of venetoclax resistance have been proposed, including chromosome 17p deletion, trisomy 12, and TP53 loss or mutation. This manuscript provides an overview of biomarkers that could predict treatment response to venetoclax.
Collapse
Affiliation(s)
- Haneen T. Salah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.D.); (M.K.)
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.D.); (M.K.)
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
9
|
De Re V, Tornesello ML, De Zorzi M, Caggiari L, Pezzuto F, Leone P, Racanelli V, Lauletta G, Zanussi S, Repetto O, Gragnani L, Rossi FM, Dolcetti R, Zignego AL, Buonaguro FM, Steffan A. PDCD1 and IFNL4 genetic variants and risk of developing hepatitis C virus-related diseases. Liver Int 2021; 41:133-149. [PMID: 32937024 PMCID: PMC7839592 DOI: 10.1111/liv.14667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Genetic variants of IFNL4 and PDCD1 genes have been shown to influence the spontaneous clearance of hepatitis C virus (HCV) infection. We investigated the IFNL4 rs12979860 and the PDCD1 polymorphisms in 734 HCV-positive patients, including 461 cases with liver disease of varying severity and 273 patients with lymphoproliferative disorders to determine the association of these genes with patient's outcome. METHODS Expression levels of PDCD1 mRNA encoded by haplotypes were investigated by quantitative PCR in hepatocellular carcinoma (HCC) tissue and peripheral blood mononuclear cells. Flow cytometry was used to detect PD-1 and its ligand PD-L1. RESULTS The frequency of IFNL4 rs12979860 C/T or T/T genotypes was significantly higher in patients with HCV-related diseases than blood donors (P < .0001). Patients expressing the IFNλ4 variant with one amino acid change that reduces IFNλ4 secretion was found increased in frequency in HCV-related diseases compared to HCC PDCD1 mRNA levels in HCC tissue were significantly higher in cases carrying the PD-1.3 A or the PD-1.7 G allele (P = .0025 and P = .0167). Linkage disequilibrium (LD) between PD-1.3 and IFNL4 was found in patients with mixed cryoglobulinaemia (MC) only (LD = 0 in HCC; LD = 72 in MC). PBMCs of MC patients expressed low levels of PD-L1 in CD19+IgM+B cells and of PD-1 in CD4+T cells suggesting the involvement of regulatory B cell-T cell interaction to the pathogenesis of MC. CONCLUSION Collectively, our data indicate an important contribution of IFNλ4 expression to the development of HCV-related HCC and an epistatic contribution of IFNL4 and PDCD1 in MC. LAY SUMMARY Studies of IFNL4 and PDCD1 genes are helpful to better understand the role of host genetic factors and immune antigens influencing the outcome of HCV-related diseases. Our data support an association between the expression of IFNλ4, which prevents the expression of IFNλ3, with all the different HCV-related diseases studied, and besides, evidence that a higher IFNλ4 expression is associated with hepatocellular at a younger age. The expression pattern of low PD-L1 on B cells and high PD-1 on CD4+T-cells in patients with HCV-positive cryoglobulinaemia suggests a critical role of the PD-1/PD-L1 signaling in modulating B cell-T cell interaction in this lymphoproliferative disease.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers/Bioproteomic facilityDepartment of Translational ResearchCentro di Riferimento Oncologico (CRO) IRCCSCancer InstituteAvianoItaly
| | - Maria Lina Tornesello
- Molecular biologyviral oncology Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale"NapoliItaly
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers/Bioproteomic facilityDepartment of Translational ResearchCentro di Riferimento Oncologico (CRO) IRCCSCancer InstituteAvianoItaly
| | - Laura Caggiari
- Immunopathology and Cancer Biomarkers/Bioproteomic facilityDepartment of Translational ResearchCentro di Riferimento Oncologico (CRO) IRCCSCancer InstituteAvianoItaly
| | - Francesca Pezzuto
- Molecular biologyviral oncology Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale"NapoliItaly
| | - Patrizia Leone
- Biomedical Sciences and Human OncologyUniversity of Bari Medical SchoolBariItaly
| | - Vito Racanelli
- Biomedical Sciences and Human OncologyUniversity of Bari Medical SchoolBariItaly
| | - Gianfranco Lauletta
- Biomedical Sciences and Human OncologyUniversity of Bari Medical SchoolBariItaly
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers/Bioproteomic facilityDepartment of Translational ResearchCentro di Riferimento Oncologico (CRO) IRCCSCancer InstituteAvianoItaly
| | - Ombretta Repetto
- Immunopathology and Cancer Biomarkers/Bioproteomic facilityDepartment of Translational ResearchCentro di Riferimento Oncologico (CRO) IRCCSCancer InstituteAvianoItaly
| | - Laura Gragnani
- Center for Systemic Manifestations of Hepatitis Viruses (MaSVE)Internal Medicine and Liver UnitDepartment of Experimental and Clinical MedicineCareggi University Hospital, Florence, ItalyFlorenceItaly
| | - Francesca Maria Rossi
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico (CRO) IRCCSAviano (PN)Italy
| | - Riccardo Dolcetti
- The University of Queensland Diamantina InstituteTranslational Research InstituteBrisbaneAustralia
| | - Anna Linda Zignego
- Center for Systemic Manifestations of Hepatitis Viruses (MaSVE)Internal Medicine and Liver UnitDepartment of Experimental and Clinical MedicineCareggi University Hospital, Florence, ItalyFlorenceItaly
| | - Franco M. Buonaguro
- Molecular biologyviral oncology Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale"NapoliItaly
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers/Bioproteomic facilityDepartment of Translational ResearchCentro di Riferimento Oncologico (CRO) IRCCSCancer InstituteAvianoItaly
| |
Collapse
|
10
|
Kang KW, Lee BH, Jeon MJ, Yu ES, Kim DS, Lee SR, Sung HJ, Choi CW, Park Y, Kim BS. Efficacy and safety of two pegfilgrastim biosimilars: Tripegfilgrastim and pegteograstim. Cancer Med 2020; 9:6102-6110. [PMID: 32633471 PMCID: PMC7476830 DOI: 10.1002/cam4.3261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023] Open
Abstract
Our aim was to compare the efficacy and safety of two recently developed biosimilars of pegfilgrastim, a pegylated form of the recombinant human granulocyte‐colony stimulating factor (G‐CSF) analog filgrastim with those of the reference pegfilgrastim. We retrospectively analyzed data from patients diagnosed with diffuse large B‐cell lymphoma (DLBCL) who were treated with first‐line R‐CHOP chemotherapy and received pegylated G‐CSF for primary prophylaxis. The following pegylated G‐CSFs were analyzed in this study: reference pegfilgrastim (Neulasta®) and two of its biosimilars (tripegfilgrastim; Dulastin® and pegteograstim; Neulapeg®). In total, 296 patients were enrolled. The number of patients with at least one episode of neutropenia during R‐CHOP chemotherapy was the lowest in the reference cohort (pegfilgrastim: 127 of 193 patients, 65.8%; tripegfilgrastim: 64 of 69 patients, 92.8%; pegteograstim: 28 of 34 patients, 82.4%, P < .001). The number of patients with at least one episode of febrile neutropenia was also lowest in the reference cohort (pegfilgrastim: 67 of 193 patients, 34.7%; tripegfilgrastim: 38 of 69 patients, 55.1%; pegteograstim: 16 of 34 patients, 47.1%, P = .009). There were no differences in the duration of neutropenia and febrile neutropenia or treatment outcomes (rate of complete response or relapse and survival). There were no reports of grade 3 or higher adverse events requiring discontinuation of prophylactic pegylated G‐CSF in any group. The safety of the pegfilgrastim biosimilars for prophylactic purposes was comparable to that of the reference pegfilgrastim; however, in terms of their efficacy, the incidence of neutropenia and febrile neutropenia tended to be higher than that when using pegfilgrastim. The clinical relevance of these results in the biosimilar cohorts should be explored.
Collapse
Affiliation(s)
- Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Byung-Hyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Min Ji Jeon
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Eun Sang Yu
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Dae Sik Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Se Ryeon Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hwa Jung Sung
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Chul Won Choi
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Byung Soo Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|