1
|
Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget 2018; 9:26309-26327. [PMID: 29899861 PMCID: PMC5995172 DOI: 10.18632/oncotarget.25241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) results from hematopoietic stem cell transformation by the bcr-abl chimeric oncogene, encoding a 210 kDa protein with constitutive tyrosine kinase activity. In spite of the efficiency of tyrosine kinase inhibitors (TKI; Imatinib), other strategies are explored to eliminate CML leukemia stem cells, such as calcium pathways. Results In this work, we showed that Store-Operated Calcium Entry (SOCE) and thrombin induced calcium influx were decreased in Bcr-Abl expressing 32d cells (32d-p210). The 32d-p210 cells showed modified Orai1/STIM1 ratio and reduced TRPC1 expression that could explain SOCE reduction. Decrease in SOCE and thrombin induced calcium entry was associated to reduced Nuclear Factor of Activated T cells (NFAT) nucleus translocation in 32d-p210 cells. We demonstrated that SOCE blockers enhanced cell mobility of 32d-p210 cells and reduced the proliferation rate in both 32d cell lines. TKI treatment slightly reduced the thrombin-induced response, but imatinib restored SOCE to the wild type level. Bcr-Abl is also known to deregulate Protein Kinase C (PKC), which was described to modulate calcium entries. We showed that PKC enhances SOCE and thrombin induced calcium entries in control cells while this effect is lost in Bcr-Abl-expressing cells. Conclusion The tyrosine kinase activity seems to regulate calcium entries probably not directly but through a global cellular reorganization involving a PKC pathway. Altogether, calcium entries are deregulated in Bcr-Abl-expressing cells and could represent an interesting therapeutic target in combination with TKI.
Collapse
|
2
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
3
|
Tang S, Wang X, Shen Q, Yang X, Yu C, Cai C, Cai G, Meng X, Zou F. Mitochondrial Ca²⁺ uniporter is critical for store-operated Ca²⁺ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun 2015; 458:186-93. [PMID: 25640838 DOI: 10.1016/j.bbrc.2015.01.092] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
Metastasis of cancer cells is a complicated multistep process requiring extensive and continuous cytosolic calcium modulation. Mitochondrial Ca(2+) uniporter (MCU), a regulator of mitochondrial Ca(2+) uptake, has been implicated in energy metabolism and various cellular signaling processes. However, whether MCU contributes to cancer cell migration has not been established. Here we examined the expression of MCU mRNA in the Oncomine database and found that MCU is correlated to metastasis and invasive breast cancer. MCU inhibition by ruthenium red (RuR) or MCU silencing by siRNA abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or thapsigargin (TG)-induced store-operated Ca2+ entry (SOCE). Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. Our results demonstrate that MCU plays a critical role in breast cancer cell migration by regulating SOCE.
Collapse
Affiliation(s)
- Shihao Tang
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou No.12 Hospital, Guangzhou, China
| | - Xubu Wang
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinyi Yang
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhui Yu
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunqing Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoshuai Cai
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Constance JE, Woessner DW, Matissek KJ, Mossalam M, Lim CS. Enhanced and selective killing of chronic myelogenous leukemia cells with an engineered BCR-ABL binding protein and imatinib. Mol Pharm 2012; 9:3318-29. [PMID: 22957899 DOI: 10.1021/mp3003539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oncoprotein Bcr-Abl stimulates prosurvival pathways and suppresses apoptosis from its exclusively cytoplasmic locale, but when targeted to the mitochondrial compartment of leukemia cells, Bcr-Abl was potently cytotoxic. Therefore, we designed a protein construct to act as a mitochondrial chaperone to move Bcr-Abl to the mitochondria. The chaperone (i.e., the 43.6 kDa intracellular cryptic escort (iCE)) contains an EGFP tag and two previously characterized motifs: (1) an optimized Bcr-Abl binding motif that interacts with the coiled-coil domain of Bcr (ccmut3; 72 residues), and (2) a cryptic mitochondrial targeting signal (cMTS; 51 residues) that selectively targets the mitochondria in oxidatively stressed cells (i.e., Bcr-Abl positive leukemic cells) via phosphorylation at a key residue (T193) by protein kinase C. While the iCE colocalized with Bcr-Abl, it did not relocalize to the mitochondria. However, the iCE was selectively toxic to Bcr-Abl positive K562 cells as compared to Bcr-Abl negative Cos-7 fibroblasts and 1471.1 murine breast cancer cells. The toxicity of the iCE to leukemic cells was equivalent to 10 μM imatinib at 48 h and the iCE combined with imatinib potentiated cell death beyond imatinib or the iCE alone. Substitution of either the ccmut3 or the cMTS with another Bcr-Abl binding domain (derived from Ras/Rab interaction protein 1 (RIN1; 295 residues)) or MTS (i.e., the canonical IMS derived from Smac/Diablo; 49 residues) did not match the cytotoxicity of the iCE. Additionally, a phosphorylation null mutant of the iCE also abolished the killing effect. The mitochondrial toxicity of Bcr-Abl and the iCE in Bcr-Abl positive K562 leukemia cells was confirmed by flow cytometric analysis of 7-AAD, TUNEL, and annexin-V staining. DNA segmentation and cell viability were assessed by microscopy. Subcellular localization of constructs was determined using confocal microscopy (including statistical colocalization analysis). Overall, the iCE was highly active against K562 leukemia cells and the killing effect was dependent upon both the ccmut3 and functional cMTS domains.
Collapse
Affiliation(s)
- Jonathan E Constance
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | | | | | | | | |
Collapse
|
5
|
Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D. Coupling of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium 2010; 47:525-37. [PMID: 20605628 DOI: 10.1016/j.ceca.2010.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/29/2022]
Abstract
Mitochondria are emerging as a major hub for cellular Ca(2+)-signaling, though their contribution to Ca(2+)-driven growth- and survival-promoting events in cancer is poorly understood. Here employing flow cytometry to monitor mitochondrial and cytosolic Ca(2+), we assessed trans-mitochondrial Ca(2+)-transport and store-operated Ca(2+)-influx (store-operated channels (SOC)) in malignant vs. non-malignant B16BL6 melanoma clones. Remarkably, mitochondrial Ca(2+)-fluxes measured in whole cells or in isolated mitochondria were accelerated in the malignant clones compared to their non-malignant counterpart clones. This coincided with enhanced SOC-mediated Ca(2+)-influx and high levels of constitutively active protein kinase B/Akt (PKB). Interruption of trans-mitochondrial Ca(2+)-transport in the malignant cells with an antagonist of the mitochondrial Na(+)/Ca(2+) exchanger, CGP-37157, abolsihed SOC-mediated Ca(2+)-influx, inactivated PKB, retarded cell growth and increased vulnerability to apoptosis. Similarly, direct SOC blockade by silencing Stim1 inhibited PKB, indicating that the crosstalk between SOC and mitochondria is essential to preserve PKB in constitutively active state. Finally, the retraction of mitochondria from sub-plasmalemmal micro-domains triggered by Fis1 over-expression inhibited SOC-coupled trans-mitochondrial Ca(2+)-flux, Ca(2+)-entry via SOC and PKB activity. Taken together, our data show that in the malignant melanoma cells, the functional and spatial relationship of up-regulated mitochondrial Ca(2+)-transport to the SOC sustains the robust Ca(2+)-responses and down-stream signaling critical for apoptosis-resistance and proliferation.
Collapse
Affiliation(s)
- Ben Feldman
- Department of Morphology, Ben-Gurion University Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
6
|
Intracellular Ca2+ stores modulate SOCCs and NMDA receptors via tyrosine kinases in rat hippocampal neurons. Cell Calcium 2009; 46:39-48. [PMID: 19423160 DOI: 10.1016/j.ceca.2009.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/06/2009] [Accepted: 04/03/2009] [Indexed: 11/24/2022]
Abstract
The regulation of intracellular Ca(2+) signalling by phosphorylation processes remains poorly defined, particularly with regards to tyrosine phosphorylation. Evidence from non-excitable cells implicates tyrosine phosphorylation in the activation of so-called store-operated Ca(2+) channels (SOCCs), but their involvement in neuronal Ca(2+) signalling is still elusive. In the present study, we determined the role of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs) in the coupling between intracellular Ca(2+) stores and SOCCs in neonatal rat hippocampal neurons by Fura-2 Ca(2+) imaging. An early Ca(2+) response from intracellular stores was triggered with thapsigargin, and followed by a secondary plasma membrane Ca(2+) response. This phase was blocked by the non-specific Ca(2+) channel blocker NiCl and the SOCC blocker, 2-aminoethoxydiphenyl borate (2-APB). Interestingly, two structurally distinct PTK inhibitors, genistein and AG126, also inhibited this secondary response. Application of the PTP inhibitor sodium orthovanadate (OV) also activated a sustained and tyrosine kinase dependent Ca(2+) response, blocked by NiCl and 2-APB. In addition, OV resulted in a Ca(2+) store dependent enhancement of NMDA responses, corresponding to, and occluding the signalling pathway for group I metabotropic glutamate receptors (mGluRs). This study provides first evidence for tyrosine based phospho-regulation of SOCCs and NMDA signalling in neurons.
Collapse
|
7
|
Fedida-Metula S, Elhyany S, Tsory S, Segal S, Hershfinkel M, Sekler I, Fishman D. Targeting lipid rafts inhibits protein kinase B by disrupting calcium homeostasis and attenuates malignant properties of melanoma cells. Carcinogenesis 2008; 29:1546-54. [PMID: 18579561 DOI: 10.1093/carcin/bgn146] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Failure of current therapeutic modalities to treat melanoma remains a challenge for clinical and experimental oncology. The aggressive growth and apoptotic resistance of this tumor are mediated, in part, by aberrantly activated protein kinase B/Akt (PKB). In many cells, PKB signaling depends on integrity of cholesterol-enriched membrane microdomains (rafts). However, it is still unclear if rafts support deregulated PKB activity in melanoma. In this study, ablation of rafts in murine (B16BL6-8, JB/RH1) and human (GA) melanoma lines by cholesterol-chelating methyl-beta-cyclodextrin (MbetaCD) reduced levels of constitutively active PKB in a dose- and time-dependent manner, while reconstitution of microdomains restored PKB activity. PKB was sensitive to the membrane-permeable Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid tetra (acetocymethyl) ester and to the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) implying the contribution of Ca2+ signaling to PKB deregulation. Indeed, malignant and apoptosis-resistant clone of B16BL6 melanoma (B16BL6-8) displayed significantly higher [Ca2+](i) and store-operated Ca2+ influx (SOC) relative to non-malignant apoptosis-sensitive B16BL6 clone (Kb30) expressing barely detectable basal levels of active PKB. Raft ablation in B16BL6-8 cells robustly inhibited SOC and decreased [Ca2+](i) to levels comparable with those detected in Kb30 cells. Treating cells by PKB-inhibiting doses of M beta CD dramatically impaired their apoptotic resistance and capacity to generate tumors. Furthermore, weekly intraperitoneal injections of M beta CD to mice grafted with melanoma cells at doses of 300 and 800 mg/kg significantly attenuated tumor development. Our data implicate membrane rafts in enhancing the resistance of melanoma to apoptosis and indicate that targeting raft microdomains is a potentially effective strategy to cure this frequently fatal form of cancer.
Collapse
Affiliation(s)
- Shlomit Fedida-Metula
- Department of Microbiology and Immunology, Ben-Gurion University Cancer Research Center, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
8
|
Li N, Zheng L, Lin P, Danielpour D, Pan Z, Ma J. Overexpression of Bax induces down-regulation of store-operated calcium entry in prostate cancer cells. J Cell Physiol 2008; 216:172-9. [PMID: 18247359 DOI: 10.1002/jcp.21385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Store-operated Ca2+ channels control homeostasis between extracellular Ca2+ reservoir and intracellular Ca2+ storage and play important roles in apoptosis in a wide variety of cells, including prostate epithelia. Recent studies have shown that the acquired apoptosis-resistant nature of androgen-independent prostate cancer is associated with reduced function of store-operated Ca2+ entry (SOCE). This study investigates the functional interaction between Bax and SOCE in the apoptosis signaling cascade in prostate cancer. Our previous findings show that NRP-154, an androgen-independent prostate cancer cell line, could sustain overexpression of exogenous Bax without undergoing apoptosis. Here we show that sustained overexpression of Bax in NRP-154 cells leads to down-regulation of SOCE and reduced Ca2+ storage inside the endoplasmic reticulum. While reduced SOCE may represent an adaptive mechanism for cell survival, increased levels of Bax in the latent state enhances the sensitivity of NRP-154 cells to TGF-beta and thapsigargin-induced apoptosis. This enhanced apoptosis can be reduced by 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of SOCE, or reversed under conditions where SOCE is only partially activated. Our results demonstrate a functional interaction between Bax and SOCE in apoptosis of prostate cancer, and support the concept that improving this interaction has therapeutic implications for prostate cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Biophysics, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
9
|
Alessandro R, Fontana S, Giordano M, Corrado C, Colomba P, Flugy AM, Santoro A, Kohn EC, De Leo G. Effects of carboxyamidotriazole on in vitro models of imatinib-resistant chronic myeloid leukemia. J Cell Physiol 2008; 215:111-21. [PMID: 17924401 DOI: 10.1002/jcp.21290] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although imatinib mesylate (IM) has revolutionized the treatment of chronic myeloid leukemia (CML), some patients develop resistance with progression of leukemia. Alternative or additional targeting of signaling pathways deregulated in bcr-abl-driven CML cells may provide a feasible option for improving clinical response and overcoming resistance. In this study, we show that carboxyamidotriazole (CAI), an orally bioavailable calcium influx and signal transduction inhibitor, is equally effective in inhibiting the proliferation and bcr-abl dependent- and independent-signaling pathways in imatinib-resistant CML cells. CAI inhibits phosphorylation of cellular proteins including STAT5 and CrkL at concentrations that induce apoptosis in IM-resistant CML cells. The combination of imatinib and CAI also down-regulated bcr-abl protein levels. Since CAI is already available for clinical use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of CML.
Collapse
Affiliation(s)
- Riccardo Alessandro
- Dipartimento di Biopatologia e Metodologie Biomediche, Sezione di Biologia e Genetica, Università di Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|