1
|
Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M, Tsemakhovich V, Sholokh A, Watad B, Tripathy DR, Sasson G, Chomsky-Hecht O, Vysochek L, Schulz-Christian M, Fecher-Trost C, Zühlke K, Bertinetti D, Herberg FW, Flockerzi V, Hirsch JA, Klussmann E, Weiss S, Dascal N. Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca 2+ channel may modulate its β-adrenergic regulation. BMC Biol 2024; 22:276. [PMID: 39609812 PMCID: PMC11603854 DOI: 10.1186/s12915-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear. RESULTS We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte. CONCLUSIONS We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.
Collapse
Affiliation(s)
- Shimrit Oz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- Department of Neuroscience, Faculty of Medicine, The Ruth and Bruce Rappaport, Haifa, 3109601, Israel
| | - Tal Keren-Raifman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Tom Sharon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Suraj Subramaniam
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moshe Katz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Vladimir Tsemakhovich
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Baraa Watad
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Debi Ranjan Tripathy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
- National Forensic Science University, Radhanagar, Agartala, Tripura, 799001, India
| | - Giorgia Sasson
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Orna Chomsky-Hecht
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Leonid Vysochek
- Heart Center, Sheba Medical Center, Ramat Gan, 5262000, Israel
| | - Maike Schulz-Christian
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Fecher-Trost
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Veit Flockerzi
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Joel A Hirsch
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Sharon Weiss
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| | - Nathan Dascal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| |
Collapse
|
2
|
Carrillo ED, Alvarado JA, Hernández A, Lezama I, García MC, Sánchez JA. Thyroid Hormone Upregulates Cav1.2 Channels in Cardiac Cells via the Downregulation of the Channels' β4 Subunit. Int J Mol Sci 2024; 25:10798. [PMID: 39409130 PMCID: PMC11476369 DOI: 10.3390/ijms251910798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Thyroid hormone binds to specific nuclear receptors, regulating the expression of target genes, with major effects on cardiac function. Triiodothyronine (T3) increases the expression of key proteins related to calcium homeostasis, such as the sarcoplasmic reticulum calcium ATPase pump, but the detailed mechanism of gene regulation by T3 in cardiac voltage-gated calcium (Cav1.2) channels remains incompletely explored. Furthermore, the effects of T3 on Cav1.2 auxiliary subunits have not been investigated. We conducted quantitative reverse transcriptase polymerase chain reaction, Western blot, and immunofluorescence experiments in H9c2 cells derived from rat ventricular tissue, examining the effects of T3 on the expression of α1c, the principal subunit of Cav1.2 channels, and Cavβ4, an auxiliary Cav1.2 subunit that regulates gene expression. The translocation of phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB) by T3 was also examined. We found that T3 has opposite effects on these channel proteins, upregulating α1c and downregulating Cavβ4, and that it increases the nuclear translocation of pCREB while decreasing the translocation of Cavβ4. Finally, we found that overexpression of Cavβ4 represses the mRNA expression of α1c, suggesting that T3 upregulates the expression of the α1c subunit in response to a decrease in Cavβ4 subunit expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge A. Sánchez
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (E.D.C.); (J.A.A.); (A.H.); (I.L.); (M.C.G.)
| |
Collapse
|
3
|
Ritzer A, Roeschl T, Nay S, Rudakova E, Volk T. Rapid Pacing Decreases L-type Ca 2+ Current and Alters Cacna1c Isogene Expression in Primary Cultured Rat Left Ventricular Myocytes. J Membr Biol 2023; 256:257-269. [PMID: 36995425 DOI: 10.1007/s00232-023-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
The L-type calcium current (ICaL) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated ICaL directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca2+ channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of ICaL in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased ICaL density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in ICaL density by 30%, mildly slowed ICaL inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in ICaL density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.
Collapse
Affiliation(s)
- Anne Ritzer
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tobias Roeschl
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Sandra Nay
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Elena Rudakova
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tilmann Volk
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany.
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Yang Y, Yu Z, Geng J, Liu M, Liu N, Li P, Hong W, Yue S, Jiang H, Ge H, Qian F, Xiong W, Wang P, Song S, Li X, Fan Y, Liu X. Cytosolic peptides encoding Ca V1 C-termini downregulate the calcium channel activity-neuritogenesis coupling. Commun Biol 2022; 5:484. [PMID: 35589958 PMCID: PMC9120191 DOI: 10.1038/s42003-022-03438-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022] Open
Abstract
L-type Ca2+ (CaV1) channels transduce channel activities into nuclear signals critical to neuritogenesis. Also, standalone peptides encoded by CaV1 DCT (distal carboxyl-terminus) act as nuclear transcription factors reportedly promoting neuritogenesis. Here, by focusing on exemplary CaV1.3 and cortical neurons under basal conditions, we discover that cytosolic DCT peptides downregulate neurite outgrowth by the interactions with CaV1's apo-calmodulin binding motif. Distinct from nuclear DCT, various cytosolic peptides exert a gradient of inhibitory effects on Ca2+ influx via CaV1 channels and neurite extension and arborization, and also the intermediate events including CREB activation and c-Fos expression. The inhibition efficacies of DCT are quantitatively correlated with its binding affinities. Meanwhile, cytosolic inhibition tends to facilitate neuritogenesis indirectly by favoring Ca2+-sensitive nuclear retention of DCT. In summary, DCT peptides as a class of CaV1 inhibitors specifically regulate the channel activity-neuritogenesis coupling in a variant-, affinity-, and localization-dependent manner.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Zhen Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Jinli Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Min Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Weili Hong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Shuhua Yue
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - He Jiang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyan Ge
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Feng Qian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ping Wang
- Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Sen Song
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Li
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Xiaodong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China. .,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
5
|
Diminished Rbfox1 increases vascular constriction by dynamically regulating alternative splicing of CaV1.2 calcium channel in hypertension. Clin Sci (Lond) 2022; 136:803-817. [PMID: 35543237 DOI: 10.1042/cs20220226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Calcium influx from depolarized CaV1.2 calcium channels triggers the contraction of vascular smooth muscle cells (VSMCs), which is important for maintaining vascular myogenic tone and blood pressure. The function of CaV1.2 channel can be subtly modulated by alternative splicing (AS), and its aberrant splicing involves in the pathogenesis of multiple cardiovascular diseases. The RNA binding protein Rbfox1 is reported to regulate the AS events of CaV1.2 channel in the neuronal development, but its potential roles in vascular CaV1.2 channels and vasoconstriction remain undefined. Here, we detect Rbfox1 is expressed in rat vascular smooth muscles. Moreover, the protein level of Rbfox1 is dramatically decreased in the hypertensive small arteries from spontaneously hypertensive rats in comparison to normotensive ones from Wistar-Kyoto rats. In VSMCs, Rbfox1 could dynamically regulate the AS of CaV1.2 exons 9* and 33. By whole-cell patch clamp, we identify knockdown of Rbfox1 induces the hyperpolarization of CaV1.2 current-voltage relationship curve in VSMCs. Furthermore, siRNA-mediated knockdown of Rbfox1 increases the K+-induced constriction of rat mesenteric arteries. In summary, our results indicate Rbfox1 modulates vascular constriction by dynamically regulating CaV1.2 alternative exons 9* and 33. Therefore, our work elucidates the underlying mechanisms for CaV1.2 channels regulation and provides a potential therapeutic target for hypertension.
Collapse
|
6
|
Hanna RM, Ahdoot RS, Kalantar-Zadeh K, Ghobry L, Kurtz I. Calcium Transport in the Kidney and Disease Processes. Front Endocrinol (Lausanne) 2022; 12:762130. [PMID: 35299844 PMCID: PMC8922474 DOI: 10.3389/fendo.2021.762130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Calcium is a key ion involved in cardiac and skeletal muscle contractility, nerve function, and skeletal structure. Global calcium balance is affected by parathyroid hormone and vitamin D, and calcium is shuttled between the extracellular space and the bone matrix compartment dynamically. The kidney plays an important role in whole-body calcium balance. Abnormalities in the kidney transport proteins alter the renal excretion of calcium. Various hormonal and regulatory pathways have evolved that regulate the renal handling of calcium to maintain the serum calcium within defined limits despite dynamic changes in dietary calcium intake. Dysregulation of renal calcium transport can occur pharmacologically, hormonally, and via genetic mutations in key proteins in various nephron segments resulting in several disease processes. This review focuses on the regulation transport of calcium in the nephron. Genetic diseases affecting the renal handling of calcium that can potentially lead to changes in the serum calcium concentration are reviewed.
Collapse
Affiliation(s)
- Ramy M. Hanna
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Rebecca S. Ahdoot
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Lena Ghobry
- School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ira Kurtz
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- University of California Los Angeles (UCLA) Brain Research Center, Los Angeles, CA, United States
| |
Collapse
|
7
|
Lei J, Liu X, Song M, Zhou Y, Fan J, Shen X, Xu X, Kapoor I, Zhu G, Wang (王觉进) J. Aberrant Exon 8/8a Splicing by Downregulated PTBP (Polypyrimidine Tract-Binding Protein) 1 Increases Ca V1.2 Dihydropyridine Resistance to Attenuate Vasodilation. Arterioscler Thromb Vasc Biol 2020; 40:2440-2453. [PMID: 32787518 DOI: 10.1161/atvbaha.120.315010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Calcium channel blockers, such as dihydropyridines, are commonly used to inhibit enhanced activity of vascular CaV1.2 channels in hypertension. However, patients who are insensitive to such treatments develop calcium channel blocker-resistant hypertension. The function of CaV1.2 channel is diversified by alternative splicing, and the splicing factor PTBP (polypyrimidine tract-binding protein) 1 influences the utilization of mutually exclusive exon 8/8a of the CaV1.2 channel during neuronal development. Nevertheless, whether and how PTBP1 makes a role in the calcium channel blocker sensitivity of vascular CaV1.2 channels, and calcium channel blocker-induced vasodilation remains unknown. Approach and Results: We detected high expression of PTBP1 and, inversely, low expression of exon 8a in CaV1.2 channels (CaV1.2E8a) in rat arteries. In contrast, the opposite expression patterns were observed in brain and heart tissues. In comparison to normotensive rats, the expressions of PTBP1 and CaV1.2E8a channels were dysregulated in mesenteric arteries of hypertensive rats. Notably, PTBP1 expression was significantly downregulated, and CaV1.2E8a channels were aberrantly increased in dihydropyridine-resistant arteries compared with dihydropyridine-sensitive arteries of rats and human. In rat vascular smooth muscle cells, PTBP1 knockdown resulted in shifting of CaV1.2 exon 8 to 8a. Using patch-clamp recordings, we demonstrated a concomitant reduction of sensitivity of CaV1.2 channels to nifedipine, due to the higher expression of CaV1.2E8a isoform. In vascular myography experiments, small interfering RNA-mediated knockdown of PTBP1 attenuated nifedipine-induced vasodilation of rat mesenteric arteries. CONCLUSIONS PTBP1 finely modulates the sensitivities of CaV1.2 channels to dihydropyridine by shifting the utilization of exon 8/8a and resulting in changes of responses in dihydropyridine-induced vasodilation.
Collapse
Affiliation(s)
- Jianzhen Lei
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Xiaoxin Liu
- Shanghai Chest Hospital, Shanghai Jiaotong University, China (X.L.)
| | - Miaomiao Song
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Yingying Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Jia Fan
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Xiaowei Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (X.S., X.X.)
| | - Xiaohan Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (X.S., X.X.)
| | - Isha Kapoor
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Guoqing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Juejin Wang (王觉进)
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| |
Collapse
|
8
|
Deus AFD, Silva VLD, de Souza SLB, Mota GAF, Sant'Ana PG, Vileigas DF, Lima-Leopoldo AP, Leopoldo AS, Campos DHSD, de Tomasi LC, Padovani CR, Kolwicz SC, Cicogna AC. Myocardial Dysfunction after Severe Food Restriction Is Linked to Changes in the Calcium-Handling Properties in Rats. Nutrients 2019; 11:nu11091985. [PMID: 31443528 PMCID: PMC6770438 DOI: 10.3390/nu11091985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Severe food restriction (FR) impairs cardiac performance, although the causative mechanisms remain elusive. Since proteins associated with calcium handling may contribute to cardiac dysfunction, this study aimed to evaluate whether severe FR results in alterations in the expression and activity of Ca2+-handling proteins that contribute to impaired myocardial performance. Male 60-day-old Wistar–Kyoto rats were fed a control or restricted diet (50% reduction in the food consumed by the control group) for 90 days. Body weight, body fat pads, adiposity index, as well as the weights of the soleus muscle and lung, were obtained. Cardiac remodeling was assessed by morphological measures. The myocardial contractile performance was analyzed in isolated papillary muscles during the administration of extracellular Ca2+ and in the absence or presence of a sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) specific blocker. The expression of Ca2+-handling regulatory proteins was analyzed via Western Blot. Severe FR resulted in a 50% decrease in body weight and adiposity measures. Cardiac morphometry was substantially altered, as heart weights were nearly twofold lower in FR rats. Papillary muscles isolated from FR hearts displayed mechanical dysfunction, including decreased developed tension and reduced contractility and relaxation. The administration of a SERCA2a blocker led to further decrements in contractile function in FR hearts, suggesting impaired SERCA2a activity. Moreover, the FR rats presented a lower expression of L-type Ca2+ channels. Therefore, myocardial dysfunction induced by severe food restriction is associated with changes in the calcium-handling properties in rats.
Collapse
Affiliation(s)
- Adriana Fernandes de Deus
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Vítor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | | | - Paula Grippa Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Ana Paula Lima-Leopoldo
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | - André Soares Leopoldo
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | | | - Loreta Casquel de Tomasi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu 18618970, Brazil
| | - Stephen C Kolwicz
- Department of Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil.
| |
Collapse
|
9
|
Zhou Y, Fan J, Zhu H, Ji L, Fan W, Kapoor I, Wang Y, Wang Y, Zhu G, Wang J. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of Ca V1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension. Hypertension 2017; 70:1183-1192. [PMID: 28993448 DOI: 10.1161/hypertensionaha.117.09301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Calcium influx from activated voltage-gated calcium channel CaV1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of CaV1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the CaV1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular CaV1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of CaV1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of CaV1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular CaV1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular CaV1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies.
Collapse
Affiliation(s)
- Yingying Zhou
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Jia Fan
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Huayuan Zhu
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Li Ji
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Wenyong Fan
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Isha Kapoor
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Yue Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Yuan Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Guoqing Zhu
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Juejin Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.).
| |
Collapse
|
10
|
Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Circ Res 2017; 121:1000-1020. [DOI: 10.1161/circresaha.117.310355] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium (Ca
2+
) is a universal regulator of various cellular functions. In cardiomyocytes, Ca
2+
is the central element of excitation–contraction coupling, but also impacts diverse signaling cascades and influences the regulation of gene expression, referred to as excitation–transcription coupling. Disturbances in cellular Ca
2+
-handling and alterations in Ca
2+
-dependent gene expression patterns are pivotal characteristics of failing cardiomyocytes, with several excitation–transcription coupling pathways shown to be critically involved in structural and functional remodeling processes. Thus, targeting Ca
2+
-dependent transcriptional pathways might offer broad therapeutic potential. In this article, we (1) review cytosolic and nuclear Ca
2+
dynamics in cardiomyocytes with respect to their impact on Ca
2+
-dependent signaling, (2) give an overview on Ca
2+
-dependent transcriptional pathways in cardiomyocytes, and (3) discuss implications of excitation–transcription coupling in the diseased heart.
Collapse
Affiliation(s)
- Matthias Dewenter
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Albert von der Lieth
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Hugo A. Katus
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Johannes Backs
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| |
Collapse
|
11
|
Roles of L-type calcium channels (Ca V1.2) and the distal C-terminus (DCT) in differentiation and mineralization of rat dental apical papilla stem cells (rSCAPs). Arch Oral Biol 2016; 74:75-81. [PMID: 27918898 DOI: 10.1016/j.archoralbio.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Voltage-gated inward Ca2+ currents (ICa) are triggered by cell depolarization and commonly produce transient increases in the cytoplasmic free Ca2+ concentration. The CaV1.2 distal C-terminus is susceptible to proteolytic cleavage, which yields a truncated CaV1.2 subunit and a cleaved C-terminal fragment (CCt or DCT). Stem cells from the apical papilla (SCAPs) has a capacity for differentiation into the odontoblastic-like cells in vitro and dentin forming in vivo, which makes SCAPs advantages in tissue engineering and regenerative endodontic. The aim of this study was to investigate the effect of CaV1.2 and its distal C-terminal fragment in the odontoblastic differentiation of rat SCAPs (stem cells from the apical papilla). DESIGN In this study, we generated stable CaV1.2 knockdown and DCT over-expressed rSCAPs using short hairpin RNA and DCT gene containing Lentivirus vectors, respectively. The transfected apical papilla cells were induced to differentiate into the odontoblast-like cells, and the expression of markers for odontoblastic differentiation were analyzed by alizarin red staining, Real-time Polymerase chain reaction (RT-PCR), and Western blot analysis. RESULTS The knockdown of CaV1.2 and excess expression of DCT both suppressed the expression of DSPP, ALP in mRNA level and the formation of calcium nodules. CONCLUSIONS Our results suggest that CaV1.2 and DCT play important roles in the differentiation of rSCAPs, DCT might act as a transcription factor and regulate the differentiation of rSCAPs.
Collapse
|
12
|
Kobrinsky E. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation. Curr Mol Pharmacol 2016; 8:54-60. [PMID: 25966705 DOI: 10.2174/1874467208666150507093601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Evgeny Kobrinsky
- National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, US.
| |
Collapse
|
13
|
Limpitikul WB, Dick IE, Ben-Johny M, Yue DT. An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca(2+)-dependent regulation. Sci Rep 2016; 6:27235. [PMID: 27255217 PMCID: PMC4891671 DOI: 10.1038/srep27235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/13/2016] [Indexed: 01/07/2023] Open
Abstract
CaV1.3 channels are a major class of L-type Ca(2+) channels which contribute to the rhythmicity of the heart and brain. In the brain, these channels are vital for excitation-transcription coupling, synaptic plasticity, and neuronal firing. Moreover, disruption of CaV1.3 function has been associated with several neurological disorders. Here, we focus on the de novo missense mutation A760G which has been linked to autism spectrum disorder (ASD). To explore the role of this mutation in ASD pathogenesis, we examined the effects of A760G on CaV1.3 channel gating and regulation. Introduction of the mutation severely diminished the Ca(2+)-dependent inactivation (CDI) of CaV1.3 channels, an important feedback system required for Ca(2+) homeostasis. This reduction in CDI was observed in two major channel splice variants, though to different extents. Using an allosteric model of channel gating, we found that the underlying mechanism of CDI reduction is likely due to enhanced channel opening within the Ca(2+)-inactivated mode. Remarkably, the A760G mutation also caused an opposite increase in voltage-dependent inactivation (VDI), resulting in a multifaceted mechanism underlying ASD. When combined, these regulatory deficits appear to increase the intracellular Ca(2+) concentration, thus potentially disrupting neuronal development and synapse formation, ultimately leading to ASD.
Collapse
Affiliation(s)
- Worawan B Limpitikul
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713,720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Ivy E Dick
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713,720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Manu Ben-Johny
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713,720 Rutland Avenue, Baltimore, MD 21205, USA
| | - David T Yue
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713,720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Poetschke C, Dragicevic E, Duda J, Benkert J, Dougalis A, DeZio R, Snutch TP, Striessnig J, Liss B. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice. Sci Rep 2015; 5:13688. [PMID: 26381090 PMCID: PMC4585382 DOI: 10.1038/srep13688] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
Collapse
Affiliation(s)
| | - Elena Dragicevic
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Antonios Dougalis
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Roberta DeZio
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Terrance P. Snutch
- Djavad Mowafaghian Centre for Brain and Health and Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, Canada
| | - Joerg Striessnig
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
15
|
Andres MA, Cooke IM, Bellinger FP, Berry MJ, Zaporteza MM, Rueli RH, Barayuga SM, Chang L. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels. J Neurochem 2015; 134:56-65. [PMID: 25807982 DOI: 10.1111/jnc.13104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Abstract
In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the dopamine D1 receptor signaling pathway. These findings suggest Ca(2+) -mediated neurotoxicity owing to over-expression of calcium channels.
Collapse
Affiliation(s)
- Marilou A Andres
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Ian M Cooke
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, USA.,Department of Biology, University of Hawaii, Honolulu, Hawaii, USA
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Maribel M Zaporteza
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Rachel H Rueli
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Stephanie M Barayuga
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Linda Chang
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
16
|
Brittain JM, Wang Y, Wilson SM, Khanna R. Regulation of CREB signaling through L-type Ca2+channels by Nipsnap-2. Channels (Austin) 2014; 6:94-102. [DOI: 10.4161/chan.19415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
18
|
Black J, Waxman S. Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron 2013; 80:280-91. [DOI: 10.1016/j.neuron.2013.09.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
19
|
Zhang SS, Shaw RM. Multilayered regulation of cardiac ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:876-85. [PMID: 23103513 PMCID: PMC3568256 DOI: 10.1016/j.bbamcr.2012.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022]
Abstract
Essential to beat-to-beat heart function is the ability for cardiomyocytes to propagate electrical excitation and generate contractile force. Both excitation and contractility depend on specific ventricular ion channels, which include the L-type calcium channel (LTCC) and the connexin 43 (Cx43) gap junction. Each of these two channels is localized to a distinct subdomain of the cardiomyocyte plasma membrane. In this review, we focus on regulatory mechanisms that govern the lifecycles of LTCC and Cx43, from their biogenesis in the nucleus to directed delivery to T-tubules and intercalated discs, respectively. We discuss recent findings on how alternative promoter usage, tissue-specific transcription, and alternative splicing determine precise ion channel expression levels within a cardiomyocyte. Moreover, recent work on microtubule and actin-dependent trafficking for Cx43 and LTCC are introduced. Lastly, we discuss how human cardiac disease phenotypes can be attributed to defects in distinct mechanisms of channel regulation at the level of gene expression and channel trafficking. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
20
|
Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, Renström E. The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 2013; 56:340-9. [PMID: 23229155 DOI: 10.1007/s00125-012-2758-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/02/2012] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Voltage-gated calcium channels of the L-type have been shown to be essential for rodent pancreatic beta cell function, but data about their presence and regulation in humans are incomplete. We therefore sought to elucidate which L-type channel isoform is functionally important and its association with inherited diabetes-related phenotypes. METHODS Beta cells of human islets from cadaver donors were enriched using FACS to study the expression of the genes encoding voltage-gated calcium channel (Cav)1.2 and Cav1.3 by absolute quantitative PCR in whole human and rat islets, as well as in clonal cells. Single-cell exocytosis was monitored as increases in cell capacitance after treatment with small interfering (si)RNA against CACNA1D (which encodes Cav1.3). Three single nucleotide polymorphisms (SNPs) were genotyped in 8,987 non-diabetic and 2,830 type 2 diabetic individuals from Finland and Sweden and analysed for associations with type 2 diabetes and insulin phenotypes. RESULTS In FACS-enriched human beta cells, CACNA1D mRNA expression exceeded that of CACNA1C (which encodes Cav1.2) by approximately 60-fold and was decreased in islets from type 2 diabetes patients. The latter coincided with diminished secretion of insulin in vitro. CACNA1D siRNA reduced glucose-stimulated insulin release in INS-1 832/13 cells and exocytosis in human beta cells. Phenotype/genotype associations of three SNPs in the CACNA1D gene revealed an association between the C allele of the SNP rs312480 and reduced mRNA expression, as well as decreased insulin secretion in vivo, whereas both rs312486/G and rs9841978/G were associated with type 2 diabetes. CONCLUSION/INTERPRETATION We conclude that the L-type calcium channel Cav1.3 is important in human glucose-induced insulin secretion, and common variants in CACNA1D might contribute to type 2 diabetes.
Collapse
Affiliation(s)
- T M Reinbothe
- Department of Clinical Sciences, Islet Pathophysiology, Lund University Diabetes Centre, Jan Waldenströms gata 35, , Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
22
|
Jerome D, Hou Q, Yuan Q. Interaction of NMDA receptors and L-type calcium channels during early odor preference learning in rats. Eur J Neurosci 2012; 36:3134-41. [PMID: 22762736 DOI: 10.1111/j.1460-9568.2012.08210.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early odor preference learning in rats provides a simple model for studying learning and memory. Learning results in an enhanced output from mitral cells, which carry odor information from the olfactory bulb to the olfactory cortex. Mitral cell NMDA receptors (NMDARs) are critically involved in plasticity at the olfactory nerve to mitral cell synapse during odor learning. Here we provide evidence that L-type calcium channels (LTCCs) provide an additional and necessary source of calcium for learning induction. LTCCs are thought to act downstream of NMDARs to bridge synaptic activation and the transcription of the plasticity-related proteins necessary for 24-h learning and memory. Using immunohistochemistry, we have demonstrated that LTCCs are present in the mitral cell and are primarily located on mitral cell proximal dendrites in neonate rats. Behavioral experiments demonstrate that inhibiting the function of LTCCs via intrabulbar infusion of nimidopine successfully blocks learning induced by pairing isoproterenol infusion with odor, while activation of LTCCs via an intrabulbar infusion of BayK-8644 rescues isoproterenol-induced learning from a D-APV block. Interestingly, the infusion of BayK-8644 paired with odor is by itself not sufficient to induce learning. Synaptoneurosome Western blot and immunohistochemistry measurement of synapsin I phosphorylation following BayK-8644 infusion suggest LTCCs are involved in synaptic release. Finally, odor preference can be induced by gabazine disinhibition of mitral cells, and NMDAR opening is sufficient for the gabazine-induced learning. These results provide the first evidence that NMDARs and LTCCs interact to permit calcium-dependent mitral cell plasticity during early odor preference learning.
Collapse
Affiliation(s)
- David Jerome
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|
23
|
Calcium handling in human heart failure—abnormalities and target for therapy. Wien Med Wochenschr 2012; 162:297-301. [DOI: 10.1007/s10354-012-0117-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/02/2012] [Indexed: 01/14/2023]
|
24
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
25
|
Wang J, Thio SS, Yang SS, Yu D, Yu CY, Wong YP, Liao P, Li S, Soong TW. Splice Variant Specific Modulation of Ca
V
1.2 Calcium Channel by Galectin-1 Regulates Arterial Constriction. Circ Res 2011; 109:1250-8. [DOI: 10.1161/circresaha.111.248849] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Ca
V
1.2 channels are essential for excitation–contraction coupling in the cardiovascular system, and alternative splicing optimizes its role. Galectin-1 (Gal-1) has been reported to regulate vascular smooth muscle cell (VSMC) function and play a role in pulmonary hypertension. We have identified Gal-1 multiple times in yeast 2-hybrid assays using the Ca
V
1.2 I–II loop as bait.
Objective:
Our hypothesis is that Gal-1 interacts directly with Ca
V
1.2 channel at the I–II loop to affect arterial constriction.
Methods and Results:
Unexpectedly, Gal-1 was found to selectively bind to the I–II loop only in the absence of alternatively spliced exon 9*. We found that the current densities of Ca
V
1.2
Δ9*
channels were significantly inhibited as a result of decreased functional surface expression due to the binding of Gal-1 at the export signal located on the C-terminus of exon 9. Moreover, the suppression of Gal-1 expression by siRNA in rat A7r5 and isolated VSMCs produced the opposite effect of increased
I
Ca,L
. The physiological significance of Gal-1 mediated splice variant-specific inhibition of Ca
V
1.2 channels was demonstrated in organ bath culture where rat MAs were reversibly permeabilized with Gal-1 siRNA and the arterial wall exhibited increased K
+
-induced constriction.
Conclusion:
The above data indicated that Gal-1 regulates
I
Ca,L
via decreasing the functional surface expression of Ca
V
1.2 channels in a splice variant selective manner and such a mechanism may play a role in modulating vascular constriction.
Collapse
Affiliation(s)
- Juejin Wang
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Sharon S.C. Thio
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Sophia S.H. Yang
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Dejie Yu
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Chye Yun Yu
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Yuk Peng Wong
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Ping Liao
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Shengnan Li
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Tuck Wah Soong
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| |
Collapse
|
26
|
Yan X, Gao S, Tang M, Xi J, Gao L, Zhu M, Luo H, Hu X, Zheng Y, Hescheler J, Liang H. Adenylyl cyclase/cAMP-PKA-mediated phosphorylation of basal L-type Ca(2+) channels in mouse embryonic ventricular myocytes. Cell Calcium 2011; 50:433-43. [PMID: 21824653 DOI: 10.1016/j.ceca.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/16/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
In fetal mammalian heart, constitutive adenylyl cyclase/cyclic AMP-dependent protein kinase A (cAMP-PKA)-mediated phosphorylation, independent of β-adrenergic receptor stimulation, could under such circumstances play an important role in sustaining the L-type calcium channel current (I(Ca,L)) and regulating other PKA dependent phosphorylation targets. In this study, we investigated the regulation of L-type Ca(2+) channel (LTCC) in murine embryonic ventricles. The data indicated a higher phosphorylation state of LTCC at early developmental stage (EDS, E9.5-E11.5) than late developmental stage (LDS, E16.5-E18.5). An intrinsic adenylyl cyclase (AC) activity, PKA activity and basal cAMP concentration were obviously higher at EDS than LDS. The cAMP increase in the presence of isobutylmethylxanthine (IBMX, nonselective phosphodiesterase inhibitor) was further augmented at LDS but not at EDS by chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (BAPTA-AM). Furthermore, I(Ca,L) increased with time after patch rupture in LDS cardiomyocytes dialyzed with pipette solution containing BAPTA whereas not at EDS. Thus we conclude that the high basal level of LTCC phosphorylation is due to the high intrinsic PKA activity and the high intrinsic AC activity at EDS. The latter is possibly owing to the little or no effect of Ca(2+) influx via LTCCs on AC activity, leading to the inability to inhibit AC.
Collapse
Affiliation(s)
- Xisheng Yan
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|