1
|
Shkryl VM. Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons. Biomolecules 2024; 14:1617. [PMID: 39766324 PMCID: PMC11727531 DOI: 10.3390/biom14121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells. It is a versatile signaling molecule that influences neurotransmitter release, muscle contraction, gene expression, and cell survival. This review focuses on the intricate dynamics of calcium signaling in hippocampal neurons, with particular emphasis on the activation of voltage-gated and ionotropic glutamate receptors in the plasma membrane and ryanodine and inositol 1,4,5-trisphosphate receptors in the ER. These channels and receptors are involved in the generation and transmission of electrical signals and the modulation of calcium concentrations within the neuronal network. By analyzing calcium fluctuations in neurons and the associated calcium handling mechanisms at the ER, mitochondria, endo-lysosome and cytosol, we can gain a deeper understanding of the mechanistic pathways underlying neuronal interactions and information transfer.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine
| |
Collapse
|
2
|
Shkryl VM. The spatio-temporal properties of calcium transients in hippocampal pyramidal neurons in vitro. Front Cell Neurosci 2022; 16:1054950. [PMID: 36589284 PMCID: PMC9795003 DOI: 10.3389/fncel.2022.1054950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The spatio-temporal properties of calcium signals were studied in cultured pyramidal neurons of the hippocampus using two-dimensional fluorescence microscopy and ratiometric dye Fura-2. Depolarization-induced Ca2+ transients revealed an asynchronous delayed increase in free Ca2+ concentration. We found that the level of free resting calcium in the cell nucleus is significantly lower compared to the soma, sub-membrane, and dendritic tree regions. Calcium release from the endoplasmic reticulum under the action of several stimuli (field stimulation, high K+ levels, and caffeine) occurs in all areas studied. Under depolarization, calcium signals developed faster in the dendrites than in other areas, while their amplitude was significantly lower since larger and slower responses inside the soma. The peak value of the calcium response to the application of 10 mM caffeine, ryanodine receptors (RyRs) agonist, does not differ in the sub-membrane zone, central region, and nucleus but significantly decreases in the dendrites. In the presence of caffeine, the delay of Ca2+ signals between various areas under depolarization significantly declined. Thirty percentage of the peak amplitude of Ca2+ transients at prolonged electric field stimulation corresponded to calcium release from the ER store by RyRs, while short-term stimulation did not depend on them. 20 μM dantrolene, RyRs inhibitor, significantly reduces Ca2+ transient under high K+ levels depolarization of the neuron. RyRs-mediated enhancement of the Ca2+ signal is more pronounced in the central part and nucleus compared to the sub-membrane or dendrites regions of the neuron. In summary, using the ratiometric imaging allowed us to obtain additional information about the involvement of RyRs in the intracellular dynamics of Ca2+ signals induced by depolarization or electrical stimulation train, with an underlying change in Ca2+ concentration in various regions of interest in hippocampal pyramidal neurons.
Collapse
|
3
|
Hiess F, Yao J, Song Z, Sun B, Zhang Z, Huang J, Chen L, Institoris A, Estillore JP, Wang R, Ter Keurs HEDJ, Stys PK, Gordon GR, Zamponi GW, Ganguly A, Chen SRW. Subcellular localization of hippocampal ryanodine receptor 2 and its role in neuronal excitability and memory. Commun Biol 2022; 5:183. [PMID: 35233070 PMCID: PMC8888588 DOI: 10.1038/s42003-022-03124-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Ryanodine receptor 2 (RyR2) is abundantly expressed in the heart and brain. Mutations in RyR2 are associated with both cardiac arrhythmias and intellectual disability. While the mechanisms of RyR2-linked arrhythmias are well characterized, little is known about the mechanism underlying RyR2-associated intellectual disability. Here, we employed a mouse model expressing a green fluorescent protein (GFP)-tagged RyR2 and a specific GFP probe to determine the subcellular localization of RyR2 in hippocampus. GFP-RyR2 was predominantly detected in the soma and dendrites, but not the dendritic spines of CA1 pyramidal neurons or dentate gyrus granular neurons. GFP-RyR2 was also detected within the mossy fibers in the stratum lucidum of CA3, but not in the presynaptic terminals of CA1 neurons. An arrhythmogenic RyR2-R4496C+/− mutation downregulated the A-type K+ current and increased membrane excitability, but had little effect on the afterhyperpolarization current or presynaptic facilitation of CA1 neurons. The RyR2-R4496C+/− mutation also impaired hippocampal long-term potentiation, learning, and memory. These data reveal the precise subcellular distribution of hippocampal RyR2 and its important role in neuronal excitability, learning, and memory. A mouse model containing a GFP-tagged ryanodine receptor 2 (RyR2) has shed light on the precise subcellular localization of hippocampal RyR2 and mechanisms underlying neuronal excitability, learning, and memory.
Collapse
Affiliation(s)
- Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zizhen Zhang
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Junting Huang
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Lina Chen
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Henk E D J Ter Keurs
- Libin Cardiovascular Institute, Department of Cardiovascular Science, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Gerald W Zamponi
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Anutosh Ganguly
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Frequency-dependent entrainment of spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations by weak AC electric field. Brain Res Bull 2019; 153:202-213. [DOI: 10.1016/j.brainresbull.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022]
|
5
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
6
|
Non-linear calcium signalling and synaptic plasticity in interneurons. Curr Opin Neurobiol 2019; 54:98-103. [DOI: 10.1016/j.conb.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
|
7
|
Nakajima R, Baker BJ. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:504003. [PMID: 30739956 PMCID: PMC6366634 DOI: 10.1088/1361-6463/aae2e3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To understand the circuitry of the brain, it is essential to clarify the functional connectivity among distinct neuronal populations. For this purpose, neuronal activity imaging using genetically-encoded calcium sensors such as GCaMP has been a powerful approach due to its cell-type specificity. However, calcium (Ca2+) is an indirect measure of neuronal activity. A more direct approach would be to use genetically encoded voltage indicators (GEVIs) to observe subthreshold, synaptic activities. The GEVI, ArcLight, which exhibits large fluorescence transients in response to voltage, was expressed in excitatory neurons of the mouse CA1 hippocampus. Fluorescent signals in response to the electrical stimulation of the Schaffer collateral axons were observed in brain slice preparations. ArcLight was able to map both excitatory and inhibitory inputs projected to excitatory neurons. In contrast, the Ca2+ signal detected by GCaMP6f, was only associated with excitatory inputs. ArcLight and similar voltage sensing probes are also becoming powerful paradigms for functional connectivity mapping of brain circuitry.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Bradley J. Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
- Department of Neuroscience, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Spindle Activity Orchestrates Plasticity during Development and Sleep. Neural Plast 2016; 2016:5787423. [PMID: 27293903 PMCID: PMC4884844 DOI: 10.1155/2016/5787423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022] Open
Abstract
Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.
Collapse
|
9
|
Antic SD, Empson RM, Knöpfel T. Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 2016; 116:135-52. [PMID: 27075539 DOI: 10.1152/jn.00226.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 12/30/2022] Open
Abstract
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems.
Collapse
Affiliation(s)
- Srdjan D Antic
- Stem Cell Institute, Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| | - Ruth M Empson
- Department of Physiology, Brain Research New Zealand, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand; and
| | - Thomas Knöpfel
- Division of Brain Sciences, Department of Medicine and Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Ross WN, Miyazaki K, Popovic MA, Zecevic D. Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages. NEUROPHOTONICS 2015; 2:021005. [PMID: 26157996 PMCID: PMC4478887 DOI: 10.1117/1.nph.2.2.021005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.
Collapse
Affiliation(s)
- William N. Ross
- New York Medical College, Department of Physiology, Valhalla, New York 10595, United States
| | - Kenichi Miyazaki
- New York Medical College, Department of Physiology, Valhalla, New York 10595, United States
| | - Marko A. Popovic
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut 06510, United States
| | - Dejan Zecevic
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut 06510, United States
| |
Collapse
|
11
|
Maeda K, Maruyama R, Nagae T, Inoue M, Aonishi T, Miyakawa H. Weak sinusoidal electric fields entrain spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations. PLoS One 2015; 10:e0122263. [PMID: 25811836 PMCID: PMC4374834 DOI: 10.1371/journal.pone.0122263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of electric fields or by providing current source to generate electric fields. To test if dendritic activities can be modulated by electric fields, we developed a method to monitor local Ca-transients in the dendrites of a neuronal population in acute rat hippocampal slices by applying spinning-disk confocal microscopy and multi-cell dye loading technique. In a condition in which the dendrites of CA1 pyramidal neurons show spontaneous Ca-transients due to added 50 μM 4-aminopyridine to the bathing medium and adjusted extracellular potassium concentration, we examined the impact of sinusoidal electric fields on the Ca-transients. We have found that spontaneously occurring fast-Ca-transients in the tufts of the apical dendrites of CA1 pyramidal neurons can be blocked by applying 1 μM tetrodotoxin, and that the timing of the transients become entrained to sub-threshold 1-4 Hz electric fields with an intensity as weak as 0.84 mV/mm applied parallel to the somato-dendritic axis of the neurons. The extent of entrainment increases with intensity below 5 mV/mm, but does not increase further over the range of 5-20 mV/mm. These results suggest that population of pyramidal cells might be able to detect electric fields with biologically relevant intensity by modulating the timing of dendritic spikes.
Collapse
Affiliation(s)
- Kazuma Maeda
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryuichi Maruyama
- Department of Computational Intelligence and System Science, Tokyo Institute of Technology, Midori-ku, Kanagawa, Japan
| | - Toru Nagae
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Masashi Inoue
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Toru Aonishi
- Department of Computational Intelligence and System Science, Tokyo Institute of Technology, Midori-ku, Kanagawa, Japan
| | - Hiroyoshi Miyakawa
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|
13
|
Dendritic calcium nonlinearities switch the direction of synaptic plasticity in fast-spiking interneurons. J Neurosci 2014; 34:3864-77. [PMID: 24623765 DOI: 10.1523/jneurosci.2253-13.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic calcium (Ca2+) nonlinearities allow neuronal coincidence detection and site-specific plasticity. Whether such events exist in dendrites of interneurons and play a role in regulation of synaptic efficacy remains unknown. Here, we used a combination of whole-cell patch-clamp recordings and two-photon Ca2+ imaging to reveal Ca2+ nonlinearities associated with synaptic integration in dendrites of mouse hippocampal CA1 fast-spiking interneurons. Local stimulation of distal dendritic branches within stratum oriens/alveus elicited fast Ca2+ transients, which showed a steep sigmoidal relationship to stimulus intensity. Supralinear Ca2+ events required Ca2+ entry through AMPA receptors with a subsequent Ca2+ release from internal stores. To investigate the functional significance of supralinear Ca2+ signals, we examined activity-dependent fluctuations in transmission efficacy triggered by Ca2+ signals of different amplitudes at excitatory synapses of interneurons. Subthreshold theta-burst stimulation (TBS) produced small amplitude postsynaptic Ca2+ transients and triggered long-term potentiation. In contrast, the suprathreshold TBS, which was associated with the generation of supralinear Ca2+ events, triggered long-term depression. Blocking group I/II metabotropic glutamate receptors (mGluRs) during suprathreshold TBS resulted in a slight reduction of supralinear Ca2+ events and induction of short-term depression. In contrast, blocking internal stores and supralinear Ca2+ signals during suprathreshold TBS switched the direction of plasticity from depression back to potentiation. These data reveal a novel type of supralinear Ca2+ events at synapses lacking the GluA2 AMPA subtype of glutamate receptors and demonstrate a general mechanism by which Ca2+ -permeable AMPA receptors, together with internal stores and mGluRs, control the direction of plasticity at interneuron excitatory synapses.
Collapse
|
14
|
Clemens AM, Johnston D. Age- and location-dependent differences in store depletion-induced h-channel plasticity in hippocampal pyramidal neurons. J Neurophysiol 2013; 111:1369-82. [PMID: 24381027 DOI: 10.1152/jn.00839.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Disruptions of endoplasmic reticulum (ER) Ca(2+) homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca(2+) stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific (h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca(2+)-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca(2+) channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.
Collapse
Affiliation(s)
- Ann M Clemens
- The Institute for Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, Texas; and
| | | |
Collapse
|
15
|
Ca2+ sparks and puffs are generated and interact in rat hippocampal CA1 pyramidal neuron dendrites. J Neurosci 2013; 33:17777-88. [PMID: 24198368 DOI: 10.1523/jneurosci.2735-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1,4,5-Inositol trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) mediate release of Ca(2+) from internal stores in many neurons. The details of the spatial and temporal characteristics of these signals and their interactions in dendrites remain to be clarified. We found that localized Ca(2+) release events, with no associated change in membrane potential, occurred spontaneously in the dendrites of rat hippocampal CA1 pyramidal neurons. Their rate, but not their amplitude or time course, could be modulated by changes in membrane potential. Together, these results suggest that the spontaneous events are similar to RyR-dependent Ca(2+) "sparks" found in cardiac myocytes. In addition, we found that we could generate another kind of localized Ca(2+) release event by either a synaptic tetanus in the presence of 3-((R)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid and CNQX or by uncaging IP3. These events had slower rise times and decay times than sparks and were more heterogeneous. These properties are similar to Ca(2+) "puffs" found in oocytes. These two localized signals interact. Low-intensity tetanic synaptic stimulation or uncaging of IP3 increased the decay time of spontaneous Ca(2+) events without changing their rise time or amplitude. Pharmacological experiments suggest that this event widening is attributable to a delayed IP3R-mediated release of Ca(2+) triggered by the synergistic action of IP3 and Ca(2+) released by RyRs. The actions of IP3 appear to be confined to the main apical dendrite because uncaging IP3 in the oblique dendrites has no effect on the time course of localized events or backpropagating action potential-evoked Ca(2+) signals in this region.
Collapse
|
16
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|