1
|
Shapiro IM, Risbud MV, Tang T, Landis WJ. Skeletal and dental tissue mineralization: The potential role of the endoplasmic reticulum/Golgi complex and the endolysosomal and autophagic transport systems. Bone 2025; 193:117390. [PMID: 39814250 DOI: 10.1016/j.bone.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes. The cellular level of phosphate ions in these organelles is also high (millimolar). While the source of these ions for mineral formation has not been identified, there are sound reasons for considering that they may be liberated from mitochondria during the utilization of ATP for anabolic purposes, perhaps linked to matrix synthesis. Published studies indicate that calcium and phosphate ions or their clusters contained as cargo within the intracellular organelles noted above lead to formation of extracellular mineral. The mineral sequestered in mitochondria has been documented as an amorphous calcium phosphate. The ion-, ion cluster- or mineral-containing vesicles exit the cell in plasma membrane blebs, secretory lysosomes or possibly intraluminal vesicles. Such a cell-regulated process provides a means for the rapid transport of ions or mineral particles to the mineralization front of skeletal and dental tissues. Within the extracellular matrix, the ions or mineral may associate to form larger aggregates and potential mineral nuclei, and they may bind to collagen and other proteins. How cells of hard tissues perform their housekeeping and other biosynthetic functions while transporting the very large volumes of ions required for mineralization of the extracellular matrix is far from clear. Addressing this and related questions raised in this review suggests guidelines for further investigations of the intracellular processes promoting the mineralization of the skeletal and dental tissues.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tengteng Tang
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
2
|
Sun Q, Weng RX, Li JH, Li YC, Xu JT, Li R, Lu X, Xu GY. Rab27a-mediated exosome secretion in anterior cingulate cortex contributes to colorectal visceral pain in adult mice with neonatal maternal deprivation. Am J Physiol Gastrointest Liver Physiol 2023; 325:G356-G367. [PMID: 37529842 DOI: 10.1152/ajpgi.00029.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Qian Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Rui-Xia Weng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jia-Hui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaomin Lu
- Department of Oncology, Hai'an People's Hospital, Nantong, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
4
|
Marrone L, Marchi PM, Webster CP, Marroccella R, Coldicott I, Reynolds S, Alves-Cruzeiro J, Yang ZL, Higginbottom A, Khundadze M, Shaw PJ, Hübner CA, Livesey MR, Azzouz M. SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Hum Mol Genet 2022; 31:2693-2710. [PMID: 35313342 PMCID: PMC9402239 DOI: 10.1093/hmg/ddac063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
Hereditary spastic paraplegia type 15 (HSP15) is a neurodegenerative condition caused by the inability to produce SPG15 protein, which leads to lysosomal swelling. However, the link between lysosomal aberrations and neuronal death is poorly explored. To uncover the functional consequences of lysosomal aberrations in disease pathogenesis, we analyze human dermal fibroblasts from HSP15 patients as well as primary cortical neurons derived from an SPG15 knockout (KO) mouse model. We find that SPG15 protein loss induces defective anterograde transport, impaired neurite outgrowth, axonal swelling and reduced autophagic flux in association with the onset of lysosomal abnormalities. Additionally, we observe lipid accumulation within the lysosomal compartment, suggesting that distortions in cellular lipid homeostasis are intertwined with lysosomal alterations. We further demonstrate that SPG15 KO neurons exhibit synaptic dysfunction, accompanied by augmented vulnerability to glutamate-induced excitotoxicity. Overall, our study establishes an intimate link between lysosomal aberrations, lipid metabolism and electrophysiological impairments, suggesting that lysosomal defects are at the core of multiple neurodegenerative disease processes in HSP15.
Collapse
Affiliation(s)
- Lara Marrone
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
- Department of Neuroscience, Janssen Pharmaceutica, Beerse, Belgium
| | - Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Raffaele Marroccella
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Steven Reynolds
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X, Geiger JD. HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. J Neuroimmune Pharmacol 2022; 17:181-194. [PMID: 33834418 PMCID: PMC8497638 DOI: 10.1007/s11481-021-09995-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
The HIV-1 coat protein gp120 continues to be implicated in the pathogenesis of HIV-1 associated neurocognitive disorder (HAND); a condition known to affect ~50% of people living with HIV-1 (PLWH). Autopsy brain tissues of HAND individuals display morphological changes to mitochondria and endolysosomes, and HIV-1 gp120 causes mitochondrial dysfunction including increased levels of reactive oxygen species (ROS) and de-acidification of endolysosomes. Ferrous iron is linked directly to ROS production, ferrous iron is contained in and released from endolysosomes, and PLWH have elevated iron and ROS levels. Based on those findings, we tested the hypothesis that HIV-1 gp120-induced endolysosome de-acidification and subsequent iron efflux from endolysosomes is responsible for increased levels of ROS. In U87MG glioblastoma cells, HIV-1 gp120 de-acidified endolysosomes, reduced endolysosome iron levels, increased levels of cytosolic and mitochondrial iron, and increased levels of cytosolic and mitochondrial ROS. These effects were all attenuated significantly by the endolysosome-specific iron chelator deferoxamine, by inhibitors of endolysosome-resident two-pore channels and divalent metal transporter-1 (DMT-1), and by inhibitors of mitochondria-resident DMT-1 and mitochondrial permeability transition pores. These results suggest that oxidative stress commonly observed with HIV-1 gp120 is downstream of its ability to de-acidify endolysosomes, to increase the release of iron from endolysosomes, and to increase the uptake of iron into mitochondria. Thus, endolysosomes might represent early and upstream targets for therapeutic strategies against HAND.
Collapse
Affiliation(s)
| | | | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicole Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Jonathan D. Geiger
- Address correspondence to: Jonathan D. Geiger, Ph.D., Chester Fritz Distinguished Professor, Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Room #110, Grand Forks, North Dakota 58203, (701) 777-2183 (P), (701) 777-0387 (F),
| |
Collapse
|
6
|
Halcrow PW, Kumar N, Afghah Z, Fischer JP, Khan N, Chen X, Meucci O, Geiger JD. Heterogeneity of ferrous iron-containing endolysosomes and effects of endolysosome iron on endolysosome numbers, sizes, and localization patterns. J Neurochem 2022; 161:69-83. [PMID: 35124818 PMCID: PMC9587899 DOI: 10.1111/jnc.15583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Endolysosomes are key regulators of iron metabolism and are central to iron trafficking and redox signaling. Iron homeostasis is linked to endolysosome acidity and inhibition of endolysosome acidity triggers iron dysregulation. Because of the physiological importance and pathological relevance of ferrous iron (Fe2+ ), we determined levels of Fe2+ specifically and quantitatively in endolysosomes as well as the effects of Fe2+ on endolysosome morphology, distribution patterns, and function. The fluorescence dye FeRhoNox-1 was specific for Fe2+ and localized to endolysosomes in U87MG astrocytoma cells and primary rat cortical neurons; in U87MG cells the endolysosome concentration of Fe2+ ([Fe2+ ]el ) was 50.4 μM in control cells, 73.6 μM in ferric ammonium citrate (FAC) treated cells, and 12.4 μM in cells treated with the iron chelator deferoxamine (DFO). Under control conditions, in primary rat cortical neurons, [Fe2+ ]el was 32.7 μM. Endolysosomes containing the highest levels of Fe2+ were located perinuclearly. Treatment of cells with FAC resulted in endolysosomes that were less acidic, increased in numbers and sizes, and located further from the nucleus; opposite effects were observed for treatments with DFO. Thus, FeRhoNox-1 is a useful probe for the study of endolysosome Fe2+ , and much more work is needed to understand better the physiological significance and pathological relevance of endolysosomes classified according to their heterogeneous iron content Cover Image for this issue: https://doi.org/10.1111/jnc.15396.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Jalyn P. Fischer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Olimpia Meucci
- Department of Physiology and Pharmacology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
7
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
8
|
Grochowska KM, Andres‐Alonso M, Karpova A, Kreutz MR. The needs of a synapse—How local organelles serve synaptic proteostasis. EMBO J 2022; 41:e110057. [PMID: 35285533 PMCID: PMC8982616 DOI: 10.15252/embj.2021110057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Maria Andres‐Alonso
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Anna Karpova
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
| | - Michael R Kreutz
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg Germany
| |
Collapse
|
9
|
Shajari H, Shajari A, Azizkhan H, Barzegari R. Correlation of Serum Ferritin and Calcium Level with Febrile Seizures: A Hospital-Based Prospective Case-Control Study. MAEDICA 2021; 16:420-425. [PMID: 34925597 PMCID: PMC8643545 DOI: 10.26574/maedica.2021.16.3.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Background:Febrile seizure is one of the most common seizure disorders occurring in children. In the literature, there are contradicting results about the role of iron and calcium deficiency in febrile seizures that has a relatively higher prevalence. So, this study was performed to investigate the correlation of serum ferritin and calcium levels with febrile seizures in children. Materials and methods:This case-control study was performed on a total number of 150 children aged 6 to 60 months who were frequently admitted to Shohada-e-Kargar Hospital in Yazd, Iran, due to fever from April 2017 to November 2017. The case group consisted of 49 patients with febrile seizures and the control group included 101 febrile children without seizures. Data regarding age, sex, past medical and family history of seizures, serum ferritin, and calcium levels were collected from patient medical records and laboratory results. Results:Participants in the case and control groups had a mean age of 28.22 months and 28.16 months, respectively. Of all participants, 56% were males. Serum ferritin level was 40.61 ng/mL in the case group and 41.80 ng/mL in the control group, with no significant difference being observed between groups (P value = 0.743). Calcium levels were 9.50 mmol/L in the case group and 9.59 mmol/L in the control group, with no significant difference being observed between groups (P value = 0.564). The findings of the present research indicated that factors including age, sex, past medical and family history of seizures did not affect the mean serum levels of ferritin and calcium of the study population. Conclusions:Based on our results, no significant difference could be established between serum ferritin and calcium levels in neither the case group nor the control group, and plausibly, these elements appear to be neither a protective nor a risk factor for a febrile seizure.
Collapse
Affiliation(s)
- Hamideh Shajari
- Department of Neonatology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Shajari
- Department of Pediatrics Nephrology, Ali-ebne-Abitaleb School of Medicine, Islamic Azad University, Yazd branch, Yazd, Iran
| | - Hamideh Azizkhan
- Department of Pediatrics Nephrology, Ali-ebne-Abitaleb School of Medicine, Islamic Azad University, Yazd branch, Yazd, Iran
| | | |
Collapse
|
10
|
Messinger YH, Pozos TC, Griffiths AG, Mize WA, Olson DR, Smith AR. Delayed diagnosis of Griscelli syndrome type 2 with compound heterozygote RAB27A variants presenting with pulmonary failure. Pediatr Hematol Oncol 2021; 38:593-601. [PMID: 33792483 DOI: 10.1080/08880018.2021.1895925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yoav H Messinger
- Pediatric Hematology/Oncology, Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Tamara C Pozos
- Department of Immunology, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Anne G Griffiths
- Children's Respiratory and Critical Care, Children's Minnesota, Minneapolis, Minnesota, USA
| | - William A Mize
- Department of Radiology, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Damon R Olson
- Pathology and Laboratory Medicine, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Angela R Smith
- University of Minnesota Pediatric Blood and Marrow Transplantation/Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Tedeschi V, Sisalli MJ, Petrozziello T, Canzoniero LMT, Secondo A. Lysosomal calcium is modulated by STIM1/TRPML1 interaction which participates to neuronal survival during ischemic preconditioning. FASEB J 2021; 35:e21277. [PMID: 33484198 DOI: 10.1096/fj.202001886r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
A robust activity of the lysosomal Ca2+ channel TRPML1 is sufficient to correct cellular defects in neurodegeneration. Importantly, lysosomes are refilled by the endoplasmic reticulum (ER). However, it is unclear how TRPML1 function could be modulated by the ER. Here, we deal with this issue in rat primary cortical neurons exposed to different oxygen conditions affecting neuronal survival. Under normoxic conditions, TRPML1: (1) showed a wide distribution within soma and along neuronal processes; (2) was stimulated by the synthetic agonist ML-SA1 and the analog of its endogenous modulator, PI(3,5)P2 diC8; (3) its knockdown by siRNA strategy produced an ER Ca2+ accumulation; (4) co-localized and co-immunoprecipitated with the ER-located Ca2+ sensor stromal interacting molecule 1 (STIM1). In cortical neurons lacking STIM1, ML-SA1 and PI(3,5)P2 diC8 failed to induce Ca2+ release and, more deeply, they induced a negligible Ca2+ passage through the channel in neurons transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1. Moreover, TRPML1/STIM1 interplay changed at low-oxygen conditions: both proteins were downregulated during the ischemic preconditioning (IPC) while during IPC followed by 1 hour of normoxia, at which STIM1 is upregulated, TRPML1 protein was reduced. However, during oxygen and glucose deprivation (OGD) followed by reoxygenation, TRPML1 and STIM1 proteins peaked at 8 hours of reoxygenation, when the proteins were co-immunoprecipitated and reactive oxygen species (ROS) hyperproduction was measured in cortical neurons. This may lead to a persistent TRPML1 Ca2+ release and lysosomal Ca2+ loss. Collectively, we showed a new modulation exerted by STIM1 on TRPML1 activity that may differently intervene during hypoxia to regulate organellar Ca2+ homeostasis.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria José Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
12
|
Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 2021; 16:219-237. [PMID: 33751445 PMCID: PMC8099033 DOI: 10.1007/s11481-021-09990-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA.
| |
Collapse
|
13
|
Morgan AJ, Galione A. Lysosomal agents inhibit store-operated Ca 2+ entry. J Cell Sci 2021; 134:224094. [PMID: 33328326 PMCID: PMC7860125 DOI: 10.1242/jcs.248658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Pharmacological manipulation of lysosome membrane integrity or ionic movements is a key strategy for probing lysosomal involvement in cellular processes. However, we have found an unexpected inhibition of store-operated Ca2+ entry (SOCE) by these agents. Dipeptides [glycyl-L-phenylalanine 2-naphthylamide (GPN) and L-leucyl-L-leucine methyl ester] that are inducers of lysosomal membrane permeabilization (LMP) uncoupled endoplasmic reticulum Ca2+-store depletion from SOCE by interfering with Stim1 oligomerization and/or Stim1 activation of Orai. Similarly, the K+/H+ ionophore, nigericin, that rapidly elevates lysosomal pH, also inhibited SOCE in a Stim1-dependent manner. In contrast, other strategies for manipulating lysosomes (bafilomycin A1, lysosomal re-positioning) had no effect upon SOCE. Finally, the effects of GPN on SOCE and Stim1 was reversed by a dynamin inhibitor, dynasore. Our data show that lysosomal agents not only release Ca2+ from stores but also uncouple this release from the normal recruitment of Ca2+ influx. Summary: Lysosomal agents uncouple ER Ca2+-release from store-operated Ca2+ entry, predominantly by inhibiting Stim1 oligomerization and its activation of Orai.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
14
|
Lv X, Miao C, Liu M, Wang X, Wang L, Wang D. 17β-Estradiol via Orai1 activates calcium mobilization to induce cell proliferation in epithelial ovarian cancer. J Biochem Mol Toxicol 2020; 34:e22603. [PMID: 32844545 DOI: 10.1002/jbt.22603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal estrogen-sensitive gynecological cancer. Studies have reported that estrogen induces rapid cellular calcium mobilization in cells and can determine the fate of a cell. We found that estrogen increased the calcium release-activated calcium channel modulator 1 (Orai1) protein expression levels in SK-OV-3 cells. However, to date, there has been no research on the functional relationship and molecular mechanism of estrogen-regulating Orai1 during EOC development. In our study, Orai1 had a high expression level in high-grade serous ovarian tumor tissues and SK-OV-3 cells. Estrogen promoted cell proliferation and migration while inhibiting cell apoptosis in SK-OV-3 cells. Orai1 silencing suppressed estrogen-induced cell migration and proliferation. Overexpression of Orai1, however, enhanced the ability of 17β-estradiol (E2) to exert its function. Estrogen induced rapid calcium influx in SK-OV-3 cells. Knockdown of Orai1 in SK-OV-3 cells blocked E2-induced stored-operated Ca2+ influx. The messenger RNA expression of caspase 3, matrix metallopeptidase 1, and cyclin-dependent kinase 6 were regulated via Orai1 under E2 treatment. Our results suggest that estrogen, by regulating Orai1, induced calcium influx to determine cell fate.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Mengyan Liu
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Xinbo Wang
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lin Wang
- School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Di Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
15
|
Loss of Two-Pore Channel 2 (TPC2) Expression Increases the Metastatic Traits of Melanoma Cells by a Mechanism Involving the Hippo Signalling Pathway and Store-Operated Calcium Entry. Cancers (Basel) 2020; 12:cancers12092391. [PMID: 32846966 PMCID: PMC7564716 DOI: 10.3390/cancers12092391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Melanoma is one of the most aggressive and treatment-resistant human cancers. The two-pore channel 2 (TPC2) is located on late endosomes, lysosomes and melanosomes. Here, we characterized how TPC2 knockout (KO) affected human melanoma cells derived from a metastatic site. TPC2 KO increased these cells’ ability to invade the extracelullar matrix and was associated with the increased expression of mesenchymal markers ZEB-1, Vimentin and N-Cadherin, and the enhanced secretion of MMP9. TPC2 KO also activated genes regulated by YAP/TAZ, which are key regulators of tumourigenesis and metastasis. Expression levels of ORAI1, a component of store-operated Ca2+ entry (SOCE), and PKC-βII, part of the HIPPO pathway that negatively regulates YAP/TAZ activity, were reduced by TPC2 KO and RNA interference knockdown. We propose a cellular mechanism mediated by ORAI1/Ca2+/PKC-βII to explain these findings. Highlighting their potential clinical significance, patients with metastatic tumours showed a reduction in TPC2 expression. Our research indicates a novel role of TPC2 in melanoma. While TPC2 loss may not activate YAP/TAZ target genes in primary melanoma, in metastatic melanoma it could activate such genes and increase cancer aggressiveness. These findings aid the understanding of tumourigenesis mechanisms and could provide new diagnostic and treatment strategies for skin cancer and other metastatic cancers.
Collapse
|
16
|
Cheng A, Tse KH, Chow HM, Gan Y, Song X, Ma F, Qian YXY, She W, Herrup K. ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 2020; 17:1998-2010. [PMID: 32757690 DOI: 10.1080/15548627.2020.1805860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with defects in multiple organs including the nervous system. Precisely how ATM deficiency leads to the complex phenotypes of A-T, however, remains elusive. Here, we reported that part of the connection may lie in autophagy and lysosomal abnormalities. We found that ATM was degraded through the autophagy pathway, while ATR was processed by the proteasome. Autophagy and lysosomal trafficking were both abnormal in atm-/- neurons and the deficits impacted cellular functions such as synapse maintenance, neuronal survival and glucose uptake. Upregulated autophagic flux was observed in atm-/- lysosomes, associated with a more acidic pH. Significantly, we found that the ATP6V1A (ATPase, H+ transporting, lysosomal V1 subunit A) proton pump was an ATM kinase target. In atm-/- neurons, lysosomes showed enhanced retrograde transport and accumulated in the perinuclear regions. We attributed this change to an unexpected physical interaction between ATM and the retrograde transport motor protein, dynein. As a consequence, SLC2A4/GLUT4 (solute carrier family 4 [facilitated glucose transporter], member 4) translocation to the plasma membrane was inhibited and trafficking to the lysosomes was increased, leading to impaired glucose uptake capacity. Together, these data underscored the involvement of ATM in a variety of neuronal vesicular trafficking processes, offering new and therapeutically useful insights into the pathogenesis of A-T.Abbreviations: 3-MA: 3-methyladenine; A-T: ataxia-telangiectasia; ALG2: asparagine-linked glycosylation 2 (alpha-1,3-mannosyltransferase); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ATG5: autophagy related 5; ATM: ataxia telangiectasia mutated; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATR: ataxia-telangiectasia and Rad3 related; BFA1: bafilomycin A1; CC3: cleaved-CASP3; CGN: cerebellar granule neuron; CLQ: chloroquine; CN: neocortical neuron; CTSB: cathepsin B; CTSD: cathepsin D; DYNLL1: the light chain1 of dynein; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; Etop: etoposide; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HBS: HEPES-buffered saline; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HOMER1: homer protein homolog 1; KU: KU-60019; LAMP1: lysosomal-associated membrane protein 1; LC3B-II: LC3-phosphatidylethanolamine conjugate; Lyso: lysosome; LysopH-GFP: lysopHluorin-GFP; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule associated protein 2; MAPK14: mitogen-activated protein kinase 14; MAPK8/JNK1: mitogen-activated protein kinase 8; MCOLN1/TRPML1: mucolipin 1; OSBPL1A: oxysterol binding protein like 1A; PIKK: phosphatidylinositol 3 kinase related kinase; Rapa: rapamycin; RILP: rab interacting lysosomal protein; ROS: reactive oxygen species; SEM: standard error of mean; SLC2A4/GLUT4: solute carrier family 2 (facilitated glucose transporter), member 4; TSC2/tuberin: TSC complex subunit 2; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system; VE: VE-822; WCL: whole-cell lysate; WT: wild type.
Collapse
Affiliation(s)
- Aifang Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yunqiao Gan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Fulin Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | | | - Weiyi She
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Hermann J, Bender M, Schumacher D, Woo MS, Shaposhnykov A, Rosenkranz SC, Kuryshev V, Meier C, Guse AH, Friese MA, Freichel M, Tsvilovskyy V. Contribution of NAADP to Glutamate-Evoked Changes in Ca 2+ Homeostasis in Mouse Hippocampal Neurons. Front Cell Dev Biol 2020; 8:496. [PMID: 32676502 PMCID: PMC7333232 DOI: 10.3389/fcell.2020.00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that evokes calcium release from intracellular organelles by the engagement of calcium release channels, including members of the Transient Receptor Potential (TRP) family, such as TRPML1, the (structurally) related Two Pore Channel type 1 (TPC1) and TPC2 channels as well as Ryanodine Receptors type 1 (RYR1; Guse, 2012). NAADP evokes calcium release from acidic calcium stores of many cell types (Guse, 2012), and NAADP-sensitive Ca2+ stores have been described in hippocampal neurons of the rat (Bak et al., 1999; McGuinness et al., 2007). Glutamate triggers Ca2+-mediated neuronal excitotoxicity in inflammation-induced neurodegenerative pathologies such as Multiple Sclerosis (MS; Friese et al., 2014), and when applied extracellularly to neurons glutamate can elevate NAADP levels in these cells. Accordingly, glutamate-evoked Ca2+ signals from intracellular organelles were inhibited by preventing organelle acidification (Pandey et al., 2009). Analysis of reported RNA sequencing experiments of cultured hippocampal neurons revealed the abundance of Mcoln1 (encoding TRPML1), Tpcn1, and Tpcn2 (encoding TPC1 and TPC2, respectively) as potential NAADP target channels in these cells. Transcripts encoding Ryr1 were not found in contrast to Ryr2 and Ryr3. To study the contribution of NAADP signaling to glutamate-evoked calcium transients in murine hippocampal neurons we used the NAADP antagonists Ned-19 (Naylor et al., 2009) and BZ194 (Dammermann et al., 2009). Our results show that both NAADP antagonists significantly reduce glutamate-evoked calcium transients. In addition to extracellular glutamate application, we studied synchronized calcium oscillations in the cells of the neuronal cultures evoked by addition of the GABAA receptor antagonist bicuculline. Pretreatment with Ned-19 (50 μM) or BZ194 (100 μM) led to an increase in the frequency of bicuculline-induced calcium oscillations at the cost of calcium transient amplitudes. Interestingly, Ned-19 triggered a rise in intracellular calcium concentrations 25 min after bicuculline stimulation, leading to the question whether NAADP acts as a neuroprotective messenger in hippocampal neurons. Taken together, our results are in agreement with the concept that NAADP signaling significantly contributes to glutamate evoked Ca2+ rise in hippocampal neurons and to the amplitude and frequency of synchronized Ca2+ oscillations triggered by spontaneous glutamate release events.
Collapse
Affiliation(s)
- Julia Hermann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Melanie Bender
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
18
|
Rab27a Contributes to the Processing of Inflammatory Pain in Mice. Cells 2020; 9:cells9061488. [PMID: 32570938 PMCID: PMC7349490 DOI: 10.3390/cells9061488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.
Collapse
|
19
|
Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nervous system, calcium signals play a major role in the conversion of synaptic stimuli into transcriptional responses. Signal-regulated gene transcription is fundamental for a range of long-lasting adaptive brain functions that include learning and memory, structural plasticity of neurites and synapses, acquired neuroprotection, chronic pain, and addiction. In this review, we summarize the diverse mechanisms governing calcium-dependent transcriptional regulation associated with central nervous system plasticity. We focus on recent advances in the field of synapse-to-nucleus communication that include studies of the signal-regulated transcriptome in human neurons, identification of novel regulatory mechanisms such as activity-induced DNA double-strand breaks, and the identification of novel forms of activity- and transcription-dependent adaptations, in particular, metabolic plasticity. We summarize the reciprocal interactions between different kinds of neuroadaptations and highlight the emerging role of activity-regulated epigenetic modifiers in gating the inducibility of signal-regulated genes.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J 2020; 34:4147-4162. [PMID: 31950548 PMCID: PMC7079041 DOI: 10.1096/fj.201902534r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
Abstract
HIV-1 Tat is essential for HIV-1 replication and appears to play an important role in the pathogenesis of HIV-associated neurological complications. Secreted from infected or transfected cells, Tat has the extraordinary ability to cross the plasma membrane. In the brain, Tat can be taken up by CNS cells via receptor-mediated endocytosis. Following endocytosis and its internalization into endolysosomes, Tat must be released in order for it to activate the HIV-1 LTR promoter and facilitate HIV-1 viral replication in the nucleus. However, the underlying mechanisms whereby Tat escapes endolysosomes remain unclear. Because Tat disrupts intracellular calcium homeostasis, we investigated the involvement of calcium in Tat endolysosome escape and subsequent LTR transactivation. We demonstrated that chelating endolysosome calcium with high-affinity rhodamine-dextran or chelating cytosolic calcium with BAPTA-AM attenuated Tat endolysosome escape and LTR transactivation. Significantly, we demonstrated that pharmacologically blocking and knocking down the endolysosome-resident two-pore channels (TPCs) attenuated Tat endolysosome escape and LTR transactivation. This calcium-mediated effect appears to be selective for TPCs because knocking down TRPML1 calcium channels was without effect. Our findings suggest that calcium released from TPCs is involved in Tat endolysosome escape and subsequent LTR transactivation. TPCs might represent a novel therapeutic target against HIV-1 infection and HIV-associated neurological complications.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Peter W. Halcrow
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Koffi L. Lakpa
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Zahra Afghah
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Nicole M. Miller
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Steven F. Dowdy
- Department of Cellular and Molecular MedicineUniversity of California San Diego (UCSD) School of MedicineLa JollaCAUSA
| | - Jonathan D. Geiger
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Xuesong Chen
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| |
Collapse
|
21
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
22
|
Lakpa KL, Halcrow PW, Chen X, Geiger JD. Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:681-697. [PMID: 31646530 PMCID: PMC7047846 DOI: 10.1007/978-3-030-12457-1_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurons are long-lived post-mitotic cells that possess an elaborate system of endosomes and lysosomes (endolysosomes) for protein quality control. Relatively recently, endolysosomes were recognized to contain high concentrations (400-600 μM) of readily releasable calcium. The release of calcium from this acidic organelle store contributes to calcium-dependent processes of fundamental physiological importance to neurons including neurotransmitter release, membrane excitability, neurite outgrowth, synaptic remodeling, and cell viability. Pathologically, disturbances of endolysosome structure and/or function have been noted in a variety of neurodegenerative disorders including Alzheimer's disease (AD) and HIV-1 associated neurocognitive disorder (HAND). And, dysregulation of intracellular calcium has been implicated in the neuropathogenesis of these same neurological disorders. Thus, it is important to better understand mechanisms by which calcium is released from endolysosomes as well as the consequences of such release to inter-organellar signaling, physiological functions of neurons, and possible pathological consequences. In doing so, a path forward towards new therapeutic modalities might be facilitated.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
23
|
Khan N, Haughey NJ, Nath A, Geiger JD. Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer's disease. Brain Res 2019; 1722:146389. [PMID: 31425679 DOI: 10.1016/j.brainres.2019.146389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022]
Abstract
Endolysosomes, mitochondria, peroxisomes, endoplasmic reticulum, and plasma membranes are now known to physically and functionally interact with each other. Such findings of inter-organellar signaling and communication has led to a resurgent interest in cell biology and an increased appreciation for the physiological actions and pathological consequences of the dynamic physical and chemical communications occurring between intracellular organelles. Others and we have shown that HIV-1 proteins implicated in the pathogenesis of neuroHIV and that Alzheimer's disease both affects the structure and function of intracellular organelles. Intracellular organelles are highly mobile, and their intracellular distribution almost certainly affects their ability to interact with other organelles and to regulate such important physiological functions as endolysosome acidification, cell motility, and nutrient homeostasis. Indeed, compounds that acidify endolysosomes cause endolysosomes to exhibit a mainly perinuclear pattern while compounds that de-acidify endolysosomes cause these organelles to exhibit a larger profile as well as movement towards plasma membranes. Endolysosome pH might be an early event in the pathogenesis of neuroHIV and Alzheimer's disease and in terms of organellar biology endolysosome changes might be upstream of HIV-1 protein-induced changes to other organelles. Thus, inter-organellar signaling mechanisms might be involved in the pathogenesis of neuroHIV and other neurological disorders, and a better understanding of inter-organellar signaling might lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Avindra Nath
- National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States.
| |
Collapse
|
24
|
Padamsey Z, Foster WJ, Emptage NJ. Intracellular Ca 2+ Release and Synaptic Plasticity: A Tale of Many Stores. Neuroscientist 2019; 25:208-226. [PMID: 30014771 DOI: 10.1177/1073858418785334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.
Collapse
Affiliation(s)
- Zahid Padamsey
- 1 Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, 15 George Square, Edinburgh, UK
| | - William J Foster
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| | - Nigel J Emptage
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| |
Collapse
|
25
|
Ye Y, Hui L, Lakpa KL, Xing Y, Wollenzien H, Chen X, Zhao JX, Geiger JD. Effects of silica nanoparticles on endolysosome function in primary cultured neurons 1. Can J Physiol Pharmacol 2018; 97:297-305. [PMID: 30312546 DOI: 10.1139/cjpp-2018-0401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silica nanoparticles (SiNPs) have been used as vehicles for drug delivery, molecular detection, and cellular manipulations in nanoneuromedicine. SiNPs may cause adverse effects in the brain including neurotoxicity, neuroinflammation, neurodegeneration, and enhancing levels of amyloid beta (Aβ) protein-all pathological hallmarks of Alzheimer's disease. Therefore, the extent to which SiNPs influence Aβ generation and the underlying mechanisms by which this occurs deserve investigation. Our studies were focused on the effects of SiNPs on endolysosomes which uptake, traffic, and mediate the actions of SiNPs. These organelles are also where amyloidogenesis largely originates. We found that SiNPs, in primary cultured hippocampal neurons, accumulated in endolysosomes and caused a rapid and persistent deacidification of endolysosomes. SiNPs significantly reduced endolysosome calcium stores as indicated by a significant reduction in the ability of the lysosomotropic agent glycyl-l-phenylalanine 2-naphthylamide (GPN) to release calcium from endolysosomes. SiNPs increased Aβ1-40 secretion, whereas 2 agents that acidified endolysosomes, ML-SA1 and CGS21680, blocked SiNP-induced deacidification and increased generation of Aβ1-40. Our findings suggest that SiNP-induced deacidification of and calcium release from endolysosomes might be mechanistically linked to increased amyloidogenesis. The use of SiNPs might not be the best nanomaterial for therapeutic strategies against Alzheimer's disease and other neurological disorders linked to endolysosome dysfunction.
Collapse
Affiliation(s)
- Yan Ye
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Liang Hui
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Koffi L Lakpa
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Yuqian Xing
- b Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Hannah Wollenzien
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Julia Xiaojun Zhao
- b Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jonathan D Geiger
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
26
|
Kelu JJ, Webb SE, Galione A, Miller AL. TPC2-mediated Ca 2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Dev Biol 2018; 438:57-68. [PMID: 29577882 DOI: 10.1016/j.ydbio.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
27
|
An efficient and cost-effective method of generating postnatal (P2-5) mouse primary hippocampal neuronal cultures. J Neurosci Methods 2017; 286:69-77. [PMID: 28546101 DOI: 10.1016/j.jneumeth.2017.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/01/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Primary culture of postnatal central neurons is a widely used methodology for applications such as the investigation of neuronal development, protein trafficking/distribution and cellular signalling. However, successful production and maintenance of such cultures, particularly from postnatal animals, can be challenging. In attempting to surmount these difficulties, several disparate culturing methodologies have been developed. Such methodologies are centred on the identification and optimisation of critical steps and, as such, the protocols and reagents utilised can differ quite markedly from protocol to protocol, often with the suggestion that the use of a (usually expensive) proprietary reagent(s), lengthy substrate preparation and/or cell isolation techniques is/are necessary for successful culture preparation. NEW METHOD Herein, we present a simple and inexpensive protocol for the preparation of primary hippocampal neurons from postnatal (2-5 day old) mice, which remain viable for experimental use for over one month. RESULTS Neurons cultured using this method follow well established developmental norms and display typical responses to standard physiological stimuli such as depolarisation and certain pharmacological agents. COMPARISON WITH EXISTING METHODS/CONCLUSION By using a novel trituration technique, simplified methodology and non-proprietary reagents, we have developed a reliable protocol that enables the cost effective and efficient production of high quality postnatal mouse hippocampal cultures. This method, if required, can also be utilised to prepare neurons both from other regions of the brain as well as from other species such as rat.
Collapse
|
28
|
Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong R, Hedegaard A, Hart ML, Emptage NJ. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines. Neuron 2016; 93:132-146. [PMID: 27989455 PMCID: PMC5222721 DOI: 10.1016/j.neuron.2016.11.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca2+ release from lysosomes in the dendrites. This Ca2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Back-propagating action potentials induce Ca2+ release from lysosomes in neurons Lysosomal Ca2+ release triggers exocytosis of the lysosomal protease Cathepsin B Cathepsin B maintains activity-dependent dendritic spine growth by activating MMP-9
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lindsay McGuinness
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Scott J Bardo
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Marcia Reinhart
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anne Hedegaard
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Michael L Hart
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
29
|
Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis. Cell Calcium 2016; 60:1-12. [DOI: 10.1016/j.ceca.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
|