1
|
Chen L, Hu J, Mu J, Li C, Wu GY, He C, Xie Y, Ye JN. Specific stimulation of PV + neurons at early stage ameliorates prefrontal ischemia-induced spatial working memory impairment. Behav Brain Res 2021; 414:113511. [PMID: 34358569 DOI: 10.1016/j.bbr.2021.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Prefrontal ischemia can cause impairments in learning and memory, executive functions and cognitive flexibility. However, the related cellular mechanisms at the early stage are still elusive. The present study used ischemic stroke in medial prefrontal cortex and systemically investigated the electrophysiological changes of the parvalbumin (PV+) interneurons 12 h post ischemia. We found that Ih and the related voltage sags in PV+ interneurons are downregulated post ischemia, which correlates with hyperpolarization of the membrane potentials and increased input resistance in these interneurons. Consistent with the suppression of Ih, postischemic PV+ interneurons exhibited a reduction in excitability and exerted a less inhibitory control over the neighboring pyramidal excitatory neurons. Moreover, we found that specifically chemogenetic activation of PV+ neurons at early stage ameliorated prefrontal ischemia-induced spatial working memory dysfunction in T-maze without effects on the locomotor coordination and balance. In contrast, suppression of PV+ neurons by blockade of Ih leaded to further aggravate the damage of spatial memory. These findings indicate that dysfunctional Ih in the PV+ neuron postischemia induces the imbalance of excitation and inhibition, which might represent a novel mechanism underlying the prefrontal ischemia-induced cognitive impairment.
Collapse
Affiliation(s)
- Lin Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jiankun Mu
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing 400036, PR China
| | - Chao Li
- Department of Neurology, The General Hospital of Western Theater Command, No.270 Rongdu Avenue, Jinniu District, Chengdu 610083, Sichuan Province, PR China
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400037, PR China
| | - Youhong Xie
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing 400036, PR China
| | - Jian-Ning Ye
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
2
|
Lee TK, Kim DW, Lee JC, Park CW, Sim H, Ahn JH, Park JH, Shin MC, Cho JH, Lee CH, Won MH, Choi SY. Changes in Cyclin D1, cdk4, and Their Associated Molecules in Ischemic Pyramidal Neurons in Gerbil Hippocampus after Transient Ischemia and Neuroprotective Effects of Ischemic Preconditioning by Keeping the Molecules in the Ischemic Neurons. BIOLOGY 2021; 10:biology10080719. [PMID: 34439951 PMCID: PMC8389197 DOI: 10.3390/biology10080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Cyclin D1 and cyclin-dependent kinase 4 (cdk4) is implicated in neuronal death induced by various pathological conditions. Ischemic preconditioning (IPC) confers neuroprotective effect, but underlying mechanisms have been poorly addressed. In this study, IPC protected pyramidal neurons (cells) in gerbil hippocampus after transient ischemia. Additionally, IPC controlled expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2 promoter binding factor 1 (E2F1). In particular, the expression of p16INK4a was not different by IPC. These findings indicate that cyclin D1/cdk4-related signals may play important roles in events in neurons related to damage/death following ischemic insults. Especially, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults. Abstract Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| |
Collapse
|