1
|
Horisaka H, Yokawa S, Suzuki R, Emoto R, Maeda R, Furuno T. Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel. Cell Biochem Biophys 2024:10.1007/s12013-024-01657-3. [PMID: 39731647 DOI: 10.1007/s12013-024-01657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line. Maintenance of intracellular Ca2+ concentration ([Ca2+]i) elevation and subsequent degranulation, evoked by crosslinking the high-affinity IgE receptors (FcεRI), were significantly suppressed in RBL-2H3 cells on collagen-coated GelMA hydrogel than those on collagen-coated glass dishes and plastic wells. Thapsigargin and phorbol myristate acetate caused sustained [Ca2+]i increase and degranulation to a similar extent in cells on both GelMA hydrogel and plastic wells/glass dishes. F-actin was clearly accumulated along the periphery of RBL-2H3 cells in plane attached to glass, but not GelMA hydrogel, suggesting that the loose actin cytoskeleton of RBL-2H3 cells on GelMA hydrogel caused suppressive degranulation through unstable FcεRI aggregation.
Collapse
Affiliation(s)
- Haruna Horisaka
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Ruriko Suzuki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Rin Emoto
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Rino Maeda
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.
| |
Collapse
|
2
|
Lei M, Wang W, Zhang H, Gong J, Cai H, Wang Z, Zhu L, Yang X, Wang S, Ma C. Piezo1 Regulates Stiffness-Dependent DRG Axon Regeneration via Modifying Cytoskeletal Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405705. [PMID: 39514408 DOI: 10.1002/advs.202405705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Despite medical interventions, the regenerative capacity of the peripheral nervous system is limited. Dorsal root ganglion (DRG) neurons possess the capacity to detect mechanical signals from their microenvironment, but the impact and mechanism by which these signals regulate axon regrowth and even regeneration in DRG neurons remain unclear. In this study, DRG neurons from newborn rats are cultured on substrates with varying degrees of stiffness in vitro to investigate the role of mechanical signals in axon regrowth. The findings reveal that substrate stiffness plays a crucial role in regulating axon regrowth, with an optimal stiffness required for this process. In addition, the data demonstrate that Piezo1, a mechanosensitive cation channel, detects substrate stiffness at the growth cone and regulates axon regrowth through activating downstream Ca2+-CaMKII-FAK-actin cascade signaling pathway. Interestingly, knocking down Piezo1 in adult rat DRG neurons leads to enhanced axon regeneration and accelerated recovery of sensory function after sciatic nerve injury. Overall, these findings contribute to the understanding of the role of mechanical signals in axon regeneration and highlight microenvironmental stiffness as a promising therapeutic target for repairing nerve injuries.
Collapse
Affiliation(s)
- Mengshi Lei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiyou Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, 430079, China
| | - Hanmian Cai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhili Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, 430079, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, Wuhan, 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, Wuhan, 430074, China
| |
Collapse
|
3
|
Zhang HL, Doblin S, Zhang ZW, Song ZJ, Dinesh B, Tabana Y, Saad DS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Wu S, Zhao R, Khaled B. Elucidating the molecular basis of ATP-induced cell death in breast cancer: Construction of a robust prognostic model. World J Clin Oncol 2024; 15:208-242. [PMID: 38455130 PMCID: PMC10915939 DOI: 10.5306/wjco.v15.i2.208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence. AIM To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism. METHODS The foundational genes orchestrating AICD mechanisms were extracted from the literature, underpinning the establishment of a prognostic model. Simultaneously, a microRNA (miRNA) prognostic model was constructed that mirrored the gene-based prognostic model. Distinctions between high- and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized, with the aim of delineating common influence mechanisms, substantiated through enrichment analysis and immune infiltration assessment. RESULTS The mRNA prognostic model in this study encompassed four specific mRNAs: P2X purinoceptor 4, pannexin 1, caspase 7, and cyclin 2. The miRNA prognostic model integrated four pivotal miRNAs: hsa-miR-615-3p, hsa-miR-519b-3p, hsa-miR-342-3p, and hsa-miR-324-3p. B cells, CD4+ T cells, CD8+ T cells, endothelial cells, and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways, while miRNA risk scores significantly enriched 29 signaling pathways, with 16 pathways being jointly enriched. CONCLUSION Of paramount significance, distinct mRNA and miRNA signature models were devised tailored to AICD, both potentially autonomous prognostic factors. This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools, offering an unparalleled window for innovative interventions. Essentially, this paper reveals the hitherto enigmatic link between AICD and breast cancer, potentially leading to revolutionary progress in personalized oncology.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Sandai Doblin
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Babu Dinesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Dahham Sabbar Saad
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Sen Wu
- Department of Biomedical Science, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Barakat Khaled
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
4
|
Bantsimba-Malanda C, Ahidouch A, Rodat-Despoix L, Ouadid-Ahidouch H. Calcium signal modulation in breast cancer aggressiveness. Cell Calcium 2023; 113:102760. [PMID: 37247443 DOI: 10.1016/j.ceca.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. The aggressive subtypes including triple negative types (TNBCs) show a resistance to chemotherapy, impaired immune system, and a worse prognosis. From a histological point of view, TNBCs are deficient in oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2+) expression. Many studies reported an alteration in the expression of calcium channels, calcium binding proteins and pumps in BC that promote proliferation, survival, resistance to chemotherapy, and metastasis. Moreover, Ca2+ signal remodeling and calcium transporters expression have been associated to TNBCs and HER2+ BC subtypes. This review provides insight into the underlying alteration of the expression of calcium-permeable channels, pumps, and calcium dependent proteins and how this alteration plays an important role in promoting metastasis, metabolic switching, inflammation, and escape to chemotherapy treatment and immune surveillance in aggressive BC including TNBCs models and highly metastatic BC tumors.
Collapse
Affiliation(s)
- Claudie Bantsimba-Malanda
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France; Department of Biology, Faculty of Sciences, University Ibn Zohr, Agadir 80000, Morocco
| | - Lise Rodat-Despoix
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France.
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France.
| |
Collapse
|
5
|
Carrisoza-Gaytan R, Kroll KT, Hiratsuka K, Gupta NR, Morizane R, Lewis JA, Satlin LM. Functional maturation of kidney organoid tubules: PIEZO1-mediated Ca 2+ signaling. Am J Physiol Cell Physiol 2023; 324:C757-C768. [PMID: 36745528 PMCID: PMC10027089 DOI: 10.1152/ajpcell.00288.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Katharina T Kroll
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
| | - Ken Hiratsuka
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Navin R Gupta
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Ryuji Morizane
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
| | - Jennifer A Lewis
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
6
|
Bong AHL, Hua T, So CL, Peters AA, Robitaille M, Tan YY, Roberts-Thomson SJ, Monteith GR. AKT Regulation of ORAI1-Mediated Calcium Influx in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14194794. [PMID: 36230716 PMCID: PMC9562175 DOI: 10.3390/cancers14194794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A remodeling in calcium homeostasis and the protein kinase AKT signaling pathway often promotes tumorigenic traits in cancer cells. Changes in calcium signaling can be mediated through altered expression or activity of calcium channels and pumps, which constitute a class of targetable therapeutic targets. Currently, the interplay between the two signaling pathways in breast cancer cells is unclear. A better understanding of the association between calcium and AKT signaling, and the molecular players involved may identify novel therapeutic strategies for breast cancers with abnormal AKT signaling. Using fluorescence calcium imaging and gene silencing/knockout techniques, we showed that increased AKT activation results in increased calcium entry, and that this is mediated through ORAI1 calcium channels. Future studies exploring therapeutic strategies to target PTEN-deficient or hyperactivated AKT cancers should consider this novel correlation between AKT activation and ORAI1-mediated calcium influx. Abstract Although breast cancer cells often exhibit both abnormal AKT signaling and calcium signaling, the association between these two pathways is unclear. Using a combination of pharmacological tools, siRNA and CRISPR/Cas9 gene silencing techniques, we investigated the association between PTEN, AKT phosphorylation and calcium signaling in a basal breast cancer cell line. We found that siRNA-mediated PTEN silencing promotes AKT phosphorylation and calcium influx in MDA-MB-231 cells. This increase in AKT phosphorylation and calcium influx was phenocopied by the pharmacological AKT activator, SC79. The increased calcium influx associated with SC79 is inhibited by silencing AKT2, but not AKT1. This increase in calcium influx is suppressed when the store-operated calcium channel, ORAI1 is silenced. The results from this study open a novel avenue for therapeutic targeting of cancer cells with increased AKT activation. Given the association between ORAI1 and breast cancer, ORAI1 is a possible therapeutic target in cancers with abnormal AKT signaling.
Collapse
Affiliation(s)
- Alice Hui Li Bong
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Choon Leng So
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Amelia A. Peters
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yin Yi Tan
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | | | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
- Correspondence:
| |
Collapse
|