1
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Sogl G, Pilling S, Fischer LJ, Ludwig J, Mihretu N, Bashtrykov P, Jeltsch A. Systematic analysis of specificities and flanking sequence preferences of bacterial DNA-(cytosine C5)-methyltransferases reveals mechanisms of enzyme- and sequence-specific DNA readout. Nucleic Acids Res 2025; 53:gkaf126. [PMID: 40037710 PMCID: PMC11879396 DOI: 10.1093/nar/gkaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
DNA-(cytosine C5)-methyltransferases (MTases) represent a large group of evolutionary related enzymes with specific DNA interaction. We systematically investigated the specificity and flanking sequence preferences of six bacterial enzymes of this class and many MTase mutants. We observed high (>1000-fold) target sequence specificity reflecting strong evolutionary pressure against unspecific DNA methylation. Strong flanking sequence preferences (∼100-fold) were observed which changed for methylation of near-cognate sites suggesting that the DNA structures in the transition states of the methylation of these sites differ. Mutation of amino acids involved in DNA contacts led to local changes of specificity and flanking sequence preferences, but also global effects indicating that larger conformational changes occur upon transition state formation. Based on these findings, we conclude that the transition state of the DNA methylation reaction precedes the covalent enzyme-DNA complex conformations with flipped target base that are resolved in structural studies. Moreover, our data suggest that alternative catalytically active conformations exist whose occupancy is modulated by enzyme-DNA contacts. Sequence dependent DNA shape analyses suggest that MTase flanking sequence preferences are caused by flanking sequence dependent modulation of the DNA conformation. Likely, many of these findings are transferable to other DNA MTases and DNA interacting proteins.
Collapse
Affiliation(s)
- Greta Sogl
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sabrina Pilling
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lukas F J Fischer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Jan Ludwig
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nahom Mihretu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Bu X, Dou X, Chen Z, Liu L, Mei Y, Ren M. DNA methylation confers epigenetic changes in cold-adapted microorganisms in response to cold stress. Extremophiles 2025; 29:16. [PMID: 39945895 DOI: 10.1007/s00792-025-01381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 04/11/2025]
Abstract
DNA methylation modification regulates gene expression during temperature stress. The adaptation mechanisms of cold-adapted microorganisms to low temperatures have been explained at the gene and metabolic levels. However, considering the important epigenetic modification in cells, the role of genomic modification in cold-adapted microorganisms remains underexplored. This study aims to discuss the regulatory role of DNA methylation in the cold response of psychrotroph Exiguobacterium undae TRM 85608. Methylome analysis shows that the methylation level of most genes in the bacterium decreases under cold stress. Combined with transcriptome results, the expression of important cold-response genes such as ABC transporter permease and ATP-binding proteins increases, but their methylation levels decrease, which is associated with a reduction of DNA adenine methyltransferase. We believe that the reduction in genomic methylation modification caused by low temperature is a major factor in stabilizing the normal growth of the cell. The bacterium counteracts cold stress by reducing the expression of methylation modification enzymes and weakening the inhibition of cold-response gene modification. These findings provide new insights into how psychrophilic organisms adapt to low temperatures.
Collapse
Affiliation(s)
- Xuying Bu
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xufeng Dou
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Zhe Chen
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Lan Liu
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Yuxia Mei
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Min Ren
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China.
| |
Collapse
|
4
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Jain AK, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. Cell Chem Biol 2024; 31:2112-2127.e6. [PMID: 39437789 DOI: 10.1016/j.chembiol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (9) or methylpiperazine (11), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and Clostridioides difficile CamA. These compounds (9 and 11) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound 11 elicits DNA damage response via p53 activation in cancer cells.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Chang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Leora Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yifei Yang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587980. [PMID: 38617249 PMCID: PMC11014617 DOI: 10.1101/2024.04.03.587980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Abstract Figure Highlights Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.
Collapse
|
6
|
Ahlawat V, Zhou HX. Multiple modes of DNA compaction by protamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570784. [PMID: 38106194 PMCID: PMC10723432 DOI: 10.1101/2023.12.08.570784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In sperm cells, protamine replaces histones to compact DNA 10-20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form bends and loops that unravel at 10-40 pN forces as well as coils that shorten the contour length by up to 40% and withstand forces strong enough (~55 pN) for strand separation. Strand separation nucleates coils, indicating protamine insertion into DNA bases. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.
Collapse
Affiliation(s)
- Vikhyaat Ahlawat
- Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, United States
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, United States
| |
Collapse
|
7
|
Konttinen O, Carmody J, Kurnik M, Johnson KA, Reich N. High fidelity DNA strand-separation is the major specificity determinant in DNA methyltransferase CcrM's catalytic mechanism. Nucleic Acids Res 2023; 51:6883-6898. [PMID: 37326016 PMCID: PMC10359602 DOI: 10.1093/nar/gkad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Strand-separation is emerging as a novel DNA recognition mechanism but the underlying mechanisms and quantitative contribution of strand-separation to fidelity remain obscure. The bacterial DNA adenine methyltransferase, CcrM, recognizes 5'GANTC'3 sequences through a DNA strand-separation mechanism with unusually high selectivity. To explore this novel recognition mechanism, we incorporated Pyrrolo-dC into cognate and noncognate DNA to monitor the kinetics of strand-separation and used tryptophan fluorescence to follow protein conformational changes. Both signals are biphasic and global fitting showed that the faster phase of DNA strand-separation was coincident with the protein conformational transition. Non-cognate sequences did not display strand-separation and methylation was reduced > 300-fold, providing evidence that strand-separation is a major determinant of selectivity. Analysis of an R350A mutant showed that the enzyme conformational step can occur without strand-separation, so the two events are uncoupled. A stabilizing role for the methyl-donor (SAM) is proposed; the cofactor interacts with a critical loop which is inserted between the DNA strands, thereby stabilizing the strand-separated conformation. The results presented here are broadly applicable to the study of other N6-adenine methyltransferases that contain the structural features implicated in strand-separation, which are found widely dispersed across many bacterial phyla, including human and animal pathogens, and some Eukaryotes.
Collapse
Affiliation(s)
- Olivia Konttinen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jason Carmody
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Martin Kurnik
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth A Johnson
- Life Sciences Interdisciplinary Graduate Program, Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Norbert Reich
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Zhou J, Deng Y, Iyamu ID, Horton JR, Yu D, Hajian T, Vedadi M, Rotili D, Mai A, Blumenthal RM, Zhang X, Huang R, Cheng X. Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Clostridioides difficile-Specific DNA Adenine Methyltransferase. ACS Chem Biol 2023; 18:734-745. [PMID: 37082867 PMCID: PMC10127221 DOI: 10.1021/acschembio.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 μM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Youchao Deng
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Iredia D. Iyamu
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Masoud Vedadi
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur Institute,
Cenci-Bolognetti Foundation, Sapienza University
of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
9
|
Moon BS, Huang D, Gao F, Cai M, Lyu G, Zhang L, Chen J, Lu W. Long range inter-chromosomal interaction of Oct4 distal enhancer loci regulates ESCs pluripotency. Cell Death Discov 2023; 9:61. [PMID: 36781845 PMCID: PMC9925822 DOI: 10.1038/s41420-023-01363-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Nuclear architecture underlies the transcriptional programs within the cell to establish cell identity. As previously demonstrated, long-range chromatin interactions of the Oct4 distal enhancer (DE) are correlated with active transcription in naïve state embryonic stem cells. Here, we identify and characterize extreme long-range interactions of the Oct4 DE through a novel CRISPR labeling technique we developed and chromosome conformation capture to identify lethal giant larvae 2 (Llgl2) and growth factor receptor-bound protein 7 (Grb7) as putative functional interacting target genes in different chromosomes. We show that the Oct4 DE directly regulates expression of Llgl2 and Grb7 in addition to Oct4. Expression of Llgl2 and Grb7 closely correlates with the pluripotent state, where knock down of either result in loss of pluripotency, and overexpression enhances somatic cell reprogramming. We demonstrated that biologically important interactions of the Oct4 DE can occur at extreme distances that are necessary for the maintenance of the pluripotent state.
Collapse
Affiliation(s)
- Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Korea.
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - David Huang
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Fan Gao
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingyang Cai
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guochang Lyu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China.
| |
Collapse
|
10
|
Structural insights into DNA N 6-adenine methylation by the MTA1 complex. Cell Discov 2023; 9:8. [PMID: 36658132 PMCID: PMC9852454 DOI: 10.1038/s41421-022-00516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
N6-methyldeoxyadenine (6mA) has recently been reported as a prevalent DNA modification in eukaryotes. The Tetrahymena thermophila MTA1 complex consisting of four subunits, namely MTA1, MTA9, p1, and p2, is the first identified eukaryotic 6mA methyltransferase (MTase) complex. Unlike the prokaryotic 6mA MTases which have been biochemically and structurally characterized, the operation mode of the MTA1 complex remains largely elusive. Here, we report the cryogenic electron microscopy structures of the quaternary MTA1 complex in S-adenosyl methionine (SAM)-bound (2.6 Å) and S-adenosyl homocysteine (SAH)-bound (2.8 Å) states. Using an AI-empowered integrative approach based on AlphaFold prediction and chemical cross-linking mass spectrometry, we further modeled a near-complete structure of the quaternary complex. Coupled with biochemical characterization, we revealed that MTA1 serves as the catalytic core, MTA1, MTA9, and p1 likely accommodate the substrate DNA, and p2 may facilitate the stabilization of MTA1. These results together offer insights into the molecular mechanism underpinning methylation by the MTA1 complex and the potential diversification of MTases for N6-adenine methylation.
Collapse
|
11
|
Zhou J, Horton JR, Menna M, Fiorentino F, Ren R, Yu D, Hajian T, Vedadi M, Mazzoccanti G, Ciogli A, Weinhold E, Hüben M, Blumenthal RM, Zhang X, Mai A, Rotili D, Cheng X. Systematic Design of Adenosine Analogs as Inhibitors of a Clostridioides difficile-Specific DNA Adenine Methyltransferase Required for Normal Sporulation and Persistence. J Med Chem 2023; 66:934-950. [PMID: 36581322 PMCID: PMC9841527 DOI: 10.1021/acs.jmedchem.2c01789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 μM and KD ∼ 0.2 μM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Martina Menna
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ren Ren
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masoud Vedadi
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giulia Mazzoccanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Michael Hüben
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
12
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:295-315. [DOI: 10.1007/978-3-031-11454-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
|
15
|
Zhou J, Horton JR, Yu D, Ren R, Blumenthal RM, Zhang X, Cheng X. Repurposing epigenetic inhibitors to target the Clostridioides difficile-specific DNA adenine methyltransferase and sporulation regulator CamA. Epigenetics 2021; 17:970-981. [PMID: 34523387 PMCID: PMC9487755 DOI: 10.1080/15592294.2021.1976910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epigenetically targeted therapeutic development, particularly for SAM-dependent methylations of DNA, mRNA and histones has been proceeding rapidly for cancer treatments over the past few years. However, this approach has barely begun to be exploited for developing new antibiotics, despite an overwhelming global need to counter antimicrobial resistance. Here, we explore whether SAM analogues, some of which are in (pre)clinical studies as inhibitors of human epigenetic enzymes, can also inhibit Clostridioides difficile-specific DNA adenine methyltransferase (CamA), a sporulation regulator present in all C. difficile genomes sequenced to date, but found in almost no other bacteria. We found that SGC0946 (an inhibitor of DOT1L), JNJ-64619178 (an inhibitor of PRMT5) and SGC8158 (an inhibitor of PRMT7) inhibit CamA enzymatic activity in vitro at low micromolar concentrations. Structural investigation of the ternary complexes of CamA-DNA in the presence of SGC0946 or SGC8158 revealed conformational rearrangements of the N-terminal arm, with no apparent disturbance of the active site. This N-terminal arm and its modulation of exchanges between SAM (the methyl donor) and SAH (the reaction product) during catalysis of methyl transfer are, to date, unique to CamA. Our work presents a substantial first step in generating potent and selective inhibitors of CamA that would serve in the near term as chemical probes to investigate the cellular mechanism(s) of CamA in controlling spore formation and colonization, and eventually as therapeutic antivirulence agents useful in treating C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Zhou J, Horton JR, Blumenthal RM, Zhang X, Cheng X. Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nat Commun 2021; 12:3436. [PMID: 34103525 PMCID: PMC8187626 DOI: 10.1038/s41467-021-23693-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile infections are an urgent medical problem. The newly discovered C. difficile adenine methyltransferase A (CamA) is specified by all C. difficile genomes sequenced to date (>300), but is rare among other bacteria. CamA is an orphan methyltransferase, unassociated with a restriction endonuclease. CamA-mediated methylation at CAAAAA is required for normal sporulation, biofilm formation, and intestinal colonization by C. difficile. We characterized CamA kinetic parameters, and determined its structure bound to DNA containing the recognition sequence. CamA contains an N-terminal domain for catalyzing methyl transfer, and a C-terminal DNA recognition domain. Major and minor groove DNA contacts in the recognition site involve base-specific hydrogen bonds, van der Waals contacts and the Watson-Crick pairing of a rearranged A:T base pair. These provide sufficient sequence discrimination to ensure high specificity. Finally, the surprisingly weak binding of the methyl donor S-adenosyl-L-methionine (SAM) might provide avenues for inhibiting CamA activity using SAM analogs.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Medvedev KE, Kinch LN, Dustin Schaeffer R, Pei J, Grishin NV. A Fifth of the Protein World: Rossmann-like Proteins as an Evolutionarily Successful Structural unit. J Mol Biol 2021; 433:166788. [PMID: 33387532 PMCID: PMC7870570 DOI: 10.1016/j.jmb.2020.166788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The Rossmann-like fold is the most prevalent and diversified doubly-wound superfold of ancient evolutionary origin. Rossmann-like domains are present in a variety of metabolic enzymes and are capable of binding diverse ligands. Discerning evolutionary relationships among these domains is challenging because of their diverse functions and ancient origin. We defined a minimal Rossmann-like structural motif (RLM), identified RLM-containing domains among known 3D structures (20%) and classified them according to their homologous relationships. New classifications were incorporated into our Evolutionary Classification of protein Domains (ECOD) database. We defined 156 homology groups (H-groups), which were further clustered into 123 possible homology groups (X-groups). Our analysis revealed that RLM-containing proteins constitute approximately 15% of the human proteome. We found that disease-causing mutations are more frequent within RLM domains than within non-RLM domains of these proteins, highlighting the importance of RLM-containing proteins for human health.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
18
|
Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X. Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 2020; 48:10034-10044. [PMID: 32453412 PMCID: PMC7544214 DOI: 10.1093/nar/gkaa446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nat Commun 2019; 10:4600. [PMID: 31601797 PMCID: PMC6787082 DOI: 10.1038/s41467-019-12498-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
The Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM) methylates the adenine of hemimethylated GANTC after replication. Here we present the structure of CcrM in complex with double-stranded DNA containing the recognition sequence. CcrM contains an N-terminal methyltransferase domain and a C-terminal nonspecific DNA-binding domain. CcrM is a dimer, with each monomer contacting primarily one DNA strand: the methyltransferase domain of one molecule binds the target strand, recognizes the target sequence, and catalyzes methyl transfer, while the C-terminal domain of the second molecule binds the non-target strand. The DNA contacts at the 5-base pair recognition site results in dramatic DNA distortions including bending, unwinding and base flipping. The two DNA strands are pulled apart, creating a bubble comprising four recognized base pairs. The five bases of the target strand are recognized meticulously by stacking contacts, van der Waals interactions and specific Watson–Crick polar hydrogen bonds to ensure high enzymatic specificity. CcrM is a cell cycle-regulated DNA methyltransferase that methylates an adenine within a specific sequence following replication in the gram negative bacterium Caulobacter crescentus. Here the authors present a crystal structure of DNA-bound CcrM that reveals the molecular mechanism leading to sequence-specific methylation.
Collapse
|
20
|
Kumari N, Karmakar A, Ganesan SK. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J Cell Physiol 2019; 235:1933-1947. [PMID: 31531859 DOI: 10.1002/jcp.29180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20-65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR.
Collapse
Affiliation(s)
- Nidhi Kumari
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Woodcock CB, Yu D, Zhang X, Cheng X. Human HemK2/KMT9/N6AMT1 is an active protein methyltransferase, but does not act on DNA in vitro, in the presence of Trm112. Cell Discov 2019; 5:50. [PMID: 31632689 PMCID: PMC6796829 DOI: 10.1038/s41421-019-0119-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Clayton B. Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
22
|
Wang D, Horton JR, Zheng Y, Blumenthal RM, Zhang X, Cheng X. Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites. Nucleic Acids Res 2019; 46:3864-3877. [PMID: 29294058 PMCID: PMC5934627 DOI: 10.1093/nar/gkx1274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Wilms tumor protein (WT1) is a Cys2-His2 zinc-finger transcription factor vital for embryonic development of the genitourinary system. The protein contains a C-terminal DNA binding domain with four tandem zinc-fingers (ZF1-4). An alternative splicing of Wt1 can add three additional amino acids-lysine (K), threonine (T) and serine (S)-between ZF3 and ZF4. In the -KTS isoform, ZF2-4 determine the sequence-specificity of DNA binding, whereas the function of ZF1 remains elusive. Three X-ray structures are described here for wild-type -KTS isoform ZF1-4 in complex with its cognate DNA sequence. We observed four unique ZF1 conformations. First, like ZF2-4, ZF1 can be positioned continuously in the DNA major groove forming a 'near-cognate' complex. Second, while ZF2-4 make base-specific interactions with one DNA molecule, ZF1 can interact with a second DNA molecule (or, presumably, two regions of the same DNA molecule). Third, ZF1 can intercalate at the joint of two tail-to-head DNA molecules. If such intercalation occurs on a continuous DNA molecule, it would kink the DNA at the ZF1 binding site. Fourth, two ZF1 units can dimerize. Furthermore, we examined a Denys-Drash syndrome-associated ZF1 mutation (methionine at position 342 is replaced by arginine). This mutation enhances WT1 affinity for a guanine base. X-ray crystallography of the mutant in complex with its preferred sequence revealed the interactions responsible for this affinity change. These results provide insight into the mechanisms of action of WT1, and clarify the fact that ZF1 plays a role in determining sequence specificity of this critical transcription factor.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Zheng
- RGENE, Inc., 953 Indiana Street, San Francisco, CA 94107, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Szczesnik T, Ho JWK, Sherwood R. Dam mutants provide improved sensitivity and spatial resolution for profiling transcription factor binding. Epigenetics Chromatin 2019; 12:36. [PMID: 31196130 PMCID: PMC6567924 DOI: 10.1186/s13072-019-0273-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022] Open
Abstract
DamID, in which a protein of interest is fused to Dam methylase, enables mapping of protein-DNA binding through readout of adenine methylation in genomic DNA.
DamID offers a compelling alternative to chromatin immunoprecipitation sequencing (ChIP-Seq), particularly in cases where cell number or antibody availability is limiting. This comes at a cost, however, of high non-specific signal and a lowered spatial resolution of several kb, limiting its application to transcription factor-DNA binding. Here we show that mutations in Dam, when fused to the transcription factor Tcf7l2, greatly reduce non-specific methylation. Combined with a simplified DamID sequencing protocol, we find that these Dam mutants allow for accurate detection of transcription factor binding at a sensitivity and spatial resolution closely matching that seen in ChIP-seq.
Collapse
Affiliation(s)
- Tomasz Szczesnik
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Richard Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Hubrecht Institute, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Oerum S, Catala M, Atdjian C, Brachet F, Ponchon L, Barraud P, Iannazzo L, Droogmans L, Braud E, Ethève-Quelquejeu M, Tisné C. Bisubstrate analogues as structural tools to investigate m 6A methyltransferase active sites. RNA Biol 2019; 16:798-808. [PMID: 30879411 PMCID: PMC6546350 DOI: 10.1080/15476286.2019.1589360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
RNA methyltransferases (MTases) catalyse the transfer of a methyl group to their RNA substrates using most-often S-adenosyl-L-methionine (SAM) as cofactor. Only few RNA-bound MTases structures are currently available due to the difficulties in crystallising RNA:protein complexes. The lack of complex structures results in poorly understood RNA recognition patterns and methylation reaction mechanisms. On the contrary, many cofactor-bound MTase structures are available, resulting in well-understood protein:cofactor recognition, that can guide the design of bisubstrate analogues that mimic the state at which both the substrate and the cofactor is bound. Such bisubstrate analogues were recently synthesized for proteins monomethylating the N6-atom of adenine (m6A). These proteins include, amongst others, RlmJ in E. coli and METLL3:METT14 and METTL16 in human. As a proof-of-concept, we here test the ability of the bisubstrate analogues to mimic the substrate:cofactor bound state during catalysis by studying their binding to RlmJ using differential scanning fluorimetry, isothermal titration calorimetry and X-ray crystallography. We find that the methylated adenine base binds in the correct pocket, and thus these analogues could potentially be used broadly to study the RNA recognition and catalytic mechanism of m6A MTases. Two bisubstrate analogues bind RlmJ with micro-molar affinity, and could serve as starting scaffolds for inhibitor design against m6A RNA MTases. The same analogues cause changes in the melting temperature of the m1A RNA MTase, TrmK, indicating non-selective protein:compound complex formation. Thus, optimization of these molecular scaffolds for m6A RNA MTase inhibition should aim to increase selectivity, as well as affinity.
Collapse
Affiliation(s)
- Stephanie Oerum
- Laboratoire d’Expression génétique microbienne, Institut de Biologie Physico-Chimique, IBPC, CNRS, Université Paris Diderot, Paris, France
| | - Marjorie Catala
- Laboratoire d’Expression génétique microbienne, Institut de Biologie Physico-Chimique, IBPC, CNRS, Université Paris Diderot, Paris, France
| | - Colette Atdjian
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université Paris Descartes, Paris, France
| | - Franck Brachet
- Institut de Biologie Physico-Chimique, IBPC, CNRS, Paris, France
| | - Luc Ponchon
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris, France
| | - Pierre Barraud
- Laboratoire d’Expression génétique microbienne, Institut de Biologie Physico-Chimique, IBPC, CNRS, Université Paris Diderot, Paris, France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université Paris Descartes, Paris, France
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université Paris Descartes, Paris, France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université Paris Descartes, Paris, France
| | - Carine Tisné
- Laboratoire d’Expression génétique microbienne, Institut de Biologie Physico-Chimique, IBPC, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
25
|
Patel A, Yang P, Tinkham M, Pradhan M, Sun MA, Wang Y, Hoang D, Wolf G, Horton JR, Zhang X, Macfarlan T, Cheng X. DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins. Cell 2018; 173:221-233.e12. [PMID: 29551271 PMCID: PMC5877318 DOI: 10.1016/j.cell.2018.02.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/24/2017] [Accepted: 02/22/2018] [Indexed: 11/24/2022]
Abstract
Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Peng Yang
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Matthew Tinkham
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Mihika Pradhan
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Yixuan Wang
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Don Hoang
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd Macfarlan
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. J Bacteriol 2017; 199:JB.00245-17. [PMID: 28559295 PMCID: PMC5512222 DOI: 10.1128/jb.00245-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems.
Collapse
|
27
|
In-depth study of DNA binding of Cys2His2 finger domains in testis zinc-finger protein. PLoS One 2017; 12:e0175051. [PMID: 28384299 PMCID: PMC5383199 DOI: 10.1371/journal.pone.0175051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 11/26/2022] Open
Abstract
Previously, we identified that both fingers 1 and 2 in the three Cys2His2 zinc-finger domains (TZD) of testis zinc-finger protein specifically bind to its cognate DNA; however, finger 3 is non-sequence–specific. To gain insights into the interaction mechanism, here we further investigated the DNA-binding characteristics of TZD bound to non-specific DNAs and its finger segments bound to cognate DNA. TZD in non-specific DNA binding showed smaller chemical shift perturbations, as expected. However, the direction of shift perturbation, change of DNA imino-proton NMR signal, and dynamics on the 15N backbone atom significantly differed between specific and non-specific binding. Using these unique characteristics, we confirmed that the three single-finger segments (TZD1, TZD2 and TZD3) and the two-finger segment (TZD23) non-specifically bind to the cognate DNA. In comparison, the other two-finger segment (TZD12) binding to the cognate DNA features simultaneous non-specific and semi-specific binding, both slowly exchanged in terms of NMR timescale. The process of TZD binding to the cognate DNA is likely stepwise: initially TZD non-specifically binds to DNA, then fingers 1 and 2 insert cooperatively into the major groove of DNA by semi-specific binding, and finally finger 3 non-specifically binds to DNA, which promotes the specific binding on fingers 1 and 2 and stabilizes the formation of a specific TZD–DNA complex.
Collapse
|
28
|
Gutierrez-Triana JA, Mateo JL, Ibberson D, Ryu S, Wittbrodt J. iDamIDseq and iDEAR: an improved method and computational pipeline to profile chromatin-binding proteins. Development 2016; 143:4272-4278. [PMID: 27707796 PMCID: PMC5117216 DOI: 10.1242/dev.139261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Abstract
DNA adenine methyltransferase identification (DamID) has emerged as an alternative method to profile protein-DNA interactions; however, critical issues limit its widespread applicability. Here, we present iDamIDseq, a protocol that improves specificity and sensitivity by inverting the steps DpnI-DpnII and adding steps that involve a phosphatase and exonuclease. To determine genome-wide protein-DNA interactions efficiently, we present the analysis tool iDEAR (iDamIDseq Enrichment Analysis with R). The combination of DamID and iDEAR permits the establishment of consistent profiles for transcription factors, even in transient assays, as we exemplify using the small teleost medaka (Oryzias latipes). We report that the bacterial Dam-coding sequence induces aberrant splicing when it is used with different promoters to drive tissue-specific expression. Here, we present an optimization of the sequence to avoid this problem. This and our other improvements will allow researchers to use DamID effectively in any organism, in a general or targeted manner. Summary: Critical improvements to the DamID protocol improve specificity and sensitivity in determining genome-wide protein-DNA interactions in transient or stable transgenic animal lines.
Collapse
Affiliation(s)
- Jose Arturo Gutierrez-Triana
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg D-69120, Germany
| | - Juan L Mateo
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg D-69120, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, Cell Networks, University of Heidelberg, Im Neuenheimer 267, Heidelberg D-69120, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany.,Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg D-69120, Germany
| |
Collapse
|
29
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Hong S, Cheng X. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:321-341. [PMID: 27826845 DOI: 10.1007/978-3-319-43624-1_14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine-5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine-have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine-N4-methylcytosine and N6-methyladenine-are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA. .,Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
31
|
Aughey GN, Southall TD. Dam it's good! DamID profiling of protein-DNA interactions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:25-37. [PMID: 26383089 PMCID: PMC4737221 DOI: 10.1002/wdev.205] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 01/09/2023]
Abstract
The interaction of proteins with chromatin is fundamental for several essential cellular processes. During the development of an organism, genes must to be tightly regulated both temporally and spatially. This is achieved through the action of chromatin‐binding proteins such as transcription factors, histone modifiers, nucleosome remodelers, and lamins. Furthermore, protein–DNA interactions are important in the adult, where their perturbation can lead to disruption of homeostasis, metabolic dysregulation, and diseases such as cancer. Understanding the nature of these interactions is of paramount importance in almost all areas of molecular biological research. In recent years, DNA adenine methyltransferase identification (DamID) has emerged as one of the most comprehensive and versatile methods available for profiling protein–DNA interactions on a genomic scale. DamID has been used to map a variety of chromatin‐binding proteins in several model organisms and has the potential for continued adaptation and application in the field of genomic biology. WIREs Dev Biol 2016, 5:25–37. doi: 10.1002/wdev.205 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, UK
| |
Collapse
|
32
|
Cartailler J, Reingruber J. Facilitated diffusion framework for transcription factor search with conformational changes. Phys Biol 2015. [PMID: 26200216 DOI: 10.1088/1478-3975/12/4/046012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular responses often require the fast activation or repression of specific genes, which depends on transcription factors (TFs) that have to quickly find the promoters of these genes within a large genome. TFs search for their DNA promoter target by alternating between bulk diffusion and sliding along the DNA, a mechanism known as facilitated diffusion. We study a facilitated diffusion framework with switching between three search modes: a bulk mode and two sliding modes triggered by conformational changes between two protein conformations. In one conformation (search mode) the TF interacts unspecifically with the DNA backbone resulting in fast sliding. In the other conformation (recognition mode) it interacts specifically and strongly with DNA base pairs leading to slow displacement. From the bulk, a TF associates with the DNA at a random position that is correlated with the previous dissociation point, which implicitly is a function of the DNA structure. The target affinity depends on the conformation. We derive exact expressions for the mean first passage time (MFPT) to bind to the promoter and the conditional probability to bind before detaching when arriving at the promoter site. We systematically explore the parameter space and compare various search scenarios. We compare our results with experimental data for the dimeric Lac repressor search in E. coli bacteria. We find that a coiled DNA conformation is absolutely necessary for a fast MFPT. With frequent spontaneous conformational changes, a fast search time is achieved even when a TF becomes immobilized in the recognition state due to the specific bindings. We find a MFPT compatible with experimental data in presence of a specific TF-DNA interaction energy that has a Gaussian distribution with a large variance.
Collapse
|
33
|
Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res 2015; 43:4296-308. [PMID: 25845600 PMCID: PMC4417163 DOI: 10.1093/nar/gkv251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). Taken together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Pollak AJ, Reich NO. DNA Adenine Methyltransferase Facilitated Diffusion Is Enhanced by Protein–DNA “Roadblock” Complexes That Induce DNA Looping. Biochemistry 2015; 54:2181-92. [DOI: 10.1021/bi501344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Pollak
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Elsawy H, Chahar S. Increasing DNA substrate specificity of the EcoDam DNA-(adenine N(6))-methyltransferase by site-directed mutagenesis. BIOCHEMISTRY (MOSCOW) 2014; 79:1262-6. [PMID: 25540012 DOI: 10.1134/s0006297914110145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA methylation catalyzed by DNA methyltransferases (MTases) is widespread in prokaryotes. In an attempt to find EcoDam variants with enhanced preference for hemimethylated DNA, the L122, P134, and V133 residues were replaced with other amino acids using site directed mutagenesis, and the catalytic activity of all variants on unmethylated and hemimethylated substrates was studied. Our results showed that, in addition to L122A, the L122S and L122A/V133L EcoDam variants were able to sense the methylation status of the 5'-GATC-3' double-stranded target recognition site and methylated only hemimethylated DNA.
Collapse
Affiliation(s)
- H Elsawy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
36
|
Sinefungin, a natural nucleoside analogue of S-adenosylmethionine, inhibits Streptococcus pneumoniae biofilm growth. BIOMED RESEARCH INTERNATIONAL 2014; 2014:156987. [PMID: 25050323 PMCID: PMC4094849 DOI: 10.1155/2014/156987] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 01/21/2023]
Abstract
Pneumococcal colonization and disease is often associated with biofilm formation, in which the bacteria exhibit elevated resistance both to antibiotics and to host defense systems, often resulting in infections that are persistent and difficult to treat. We evaluated the effect of sinefungin, a nucleoside analogue of S-adenosylmethionine, on pneumococcal in vitro biofilm formation and in vivo colonization. Sinefungin is bacteriostatic to pneumococci and significantly decreased biofilm growth and inhibited proliferation and structure of actively growing biofilms but did not alter growth or the matrix structure of established biofilms. Sinefungin significantly reduced pneumococcal colonization in rat middle ear. The quorum sensing molecule (autoinducer-2) production was significantly reduced by 92% in sinefungin treated samples. The luxS, pfs, and speE genes were downregulated in biofilms grown in the presence of sinefungin. This study shows that sinefungin inhibits pneumococcal biofilm growth in vitro and colonization in vivo, decreases AI-2 production, and downregulates luxS, pfs, and speE gene expressions. Therefore, the S-adenosylmethionine (SAM) inhibitors could be used as lead compounds for the development of novel antibiofilm agents against pneumococci.
Collapse
|
37
|
De S, Chan ACK, Coyne HJ, Bhachech N, Hermsdorf U, Okon M, Murphy MEP, Graves BJ, McIntosh LP. Steric mechanism of auto-inhibitory regulation of specific and non-specific DNA binding by the ETS transcriptional repressor ETV6. J Mol Biol 2014; 426:1390-406. [PMID: 24333486 PMCID: PMC4278593 DOI: 10.1016/j.jmb.2013.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 11/29/2022]
Abstract
DNA binding by the ETS transcriptional repressor ETV6 (or TEL) is auto-inhibited ~50-fold due to an α-helix that sterically blocks its ETS domain binding interface. Using NMR spectroscopy, we demonstrate that this marginally stable helix is unfolded, and not displaced to a non-inhibitory position, when ETV6 is bound to DNA containing a consensus (5')GGAA(3') recognition site. Although significantly lower in affinity, binding to non-specific DNA is auto-inhibited ~5-fold and is also accompanied by helix unfolding. Based on NMR chemical shift perturbations, both specific and non-specific DNA are bound via the same canonical ETS domain interface. However, spectral perturbations are smaller for the non-specific complex, suggesting weaker and less well-defined interactions than in the specific complex. In parallel, the crystal structure of ETV6 bound to a specific DNA duplex was determined. The structure of this complex reveals that a non-conserved histidine residue in the ETS domain recognition helix helps establish the specificity of ETV6 for DNA-binding sites containing (5')GGAA(3')versus(5')GGAT(3'). These studies provide a unified steric mechanism for attenuating ETV6 binding to both specific and non-specific DNA and expand the repertoire of characterized auto-inhibitory strategies utilized to regulate ETS factors.
Collapse
Affiliation(s)
- Soumya De
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - H Jerome Coyne
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Niraja Bhachech
- Department of Oncological Sciences, University of Utah School of Medicine, and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ulrike Hermsdorf
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Barbara J Graves
- Department of Oncological Sciences, University of Utah School of Medicine, and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
38
|
Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D. Synthesis and Evaluation of Analogues of N-Phthaloyl-l-tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1. J Med Chem 2014; 57:421-34. [DOI: 10.1021/jm401419p] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saâdia Asgatay
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Christine Champion
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Gaël Marloie
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Thierry Drujon
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Alexandre Ceccaldi
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Alexandre Erdmann
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Arumugam Rajavelu
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Philippe Schambel
- Institut de Recherche Pierre
Fabre, Centre de Recherche Pierre Fabre, 17 Rue Jean Moulin, 81 106, Castres Cedex, France
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Olivier Lequin
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Philippe Karoyan
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Paola B. Arimondo
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Dominique Guianvarc’h
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
39
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20-44. [PMID: 24068554 PMCID: PMC3874165 DOI: 10.1093/nar/gkt847] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - David T. F. Dryden
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
40
|
Punekar AS, Liljeruhm J, Shepherd TR, Forster AC, Selmer M. Structural and functional insights into the molecular mechanism of rRNA m6A methyltransferase RlmJ. Nucleic Acids Res 2013; 41:9537-48. [PMID: 23945937 PMCID: PMC3814359 DOI: 10.1093/nar/gkt719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
RlmJ catalyzes the m6A2030 methylation of 23S rRNA during ribosome biogenesis in Escherichia coli. Here, we present crystal structures of RlmJ in apo form, in complex with the cofactor S-adenosyl-methionine and in complex with S-adenosyl-homocysteine plus the substrate analogue adenosine monophosphate (AMP). RlmJ displays a variant of the Rossmann-like methyltransferase (MTase) fold with an inserted helical subdomain. Binding of cofactor and substrate induces a large shift of the N-terminal motif X tail to make it cover the cofactor binding site and trigger active-site changes in motifs IV and VIII. Adenosine monophosphate binds in a partly accommodated state with the target N6 atom 7 Å away from the sulphur of AdoHcy. The active site of RlmJ with motif IV sequence 164DPPY167 is more similar to DNA m6A MTases than to RNA m62A MTases, and structural comparison suggests that RlmJ binds its substrate base similarly to DNA MTases T4Dam and M.TaqI. RlmJ methylates in vitro transcribed 23S rRNA, as well as a minimal substrate corresponding to helix 72, demonstrating independence of previous modifications and tertiary interactions in the RNA substrate. RlmJ displays specificity for adenosine, and mutagenesis experiments demonstrate the critical roles of residues Y4, H6, K18 and D164 in methyl transfer.
Collapse
Affiliation(s)
- Avinash S Punekar
- Department of Cell and Molecular Biology, Uppsala University, PO Box 596, SE 751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
41
|
Marcovitz A, Levy Y. Weak frustration regulates sliding and binding kinetics on rugged protein-DNA landscapes. J Phys Chem B 2013; 117:13005-14. [PMID: 23668488 DOI: 10.1021/jp402296d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fundamental step in gene-regulatory activities, such as repression, transcription, and recombination, is the binding of regulatory DNA-binding proteins (DBPs) to specific targets in the genome. To rapidly localize their regulatory genomic sites, DBPs reduce the dimensionality of the search space by combining three-dimensional (3D) diffusion in solution with one-dimensional (1D) sliding along DNA. However, the requirement to form a thermodynamically stable protein-DNA complex at the cognate genomic target sequence imposes a challenge on the protein because, as it navigates one-dimensionally along the genome, it may come in close contact with sites that share partial or even complete sequence similarity with the functional DNA sequence. This puzzling issue creates a conflict between two basic requirements: finding the cognate site quickly and stably binding it. Here, we structurally assessed the interface adopted by a variety of DBPs to bind DNA specifically and nonspecifically, and found that many DBPs utilize one interface to specifically recognize a DNA sequence and another to assist in propagating along the DNA through nonspecific associations. While these two interfaces overlap each other in some proteins, they present partial overlap in others and frustrate the protein-DNA interface. Using coarse-grained molecular dynamics simulations, we demonstrate that the existence of frustration in DBPs is a compromise between rapid 1D diffusion along other regions in the genome (high frustration smoothens the landscape for sliding) and rapid formation of a stable and essentially active protein-DNA complex (low frustration reduces the free energy barrier for switching between the two binding modes).
Collapse
Affiliation(s)
- Amir Marcovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot, 76100, Israel
| | | |
Collapse
|
42
|
Crenshaw CM, Nam K, Oo K, Kutchukian PS, Bowman BR, Karplus M, Verdine GL. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem 2012; 287:24916-28. [PMID: 22511791 PMCID: PMC3408145 DOI: 10.1074/jbc.m111.316497] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.
Collapse
Affiliation(s)
- Charisse M. Crenshaw
- From the Departments of Molecular and Cellular Biology, ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Kwangho Nam
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | - Peter S. Kutchukian
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Brian R. Bowman
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin Karplus
- Chemical and Chemical Biology, and ,the L'Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Gregory L. Verdine
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, ,the Program in Cancer Chemical Biology and Chemical Biology Initiative, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and , To whom correspondence should be addressed. 12 Oxford St., Cambridge, MA 02138. Fax: 617-495-8755; E-mail:
| |
Collapse
|
43
|
Albu RF, Zacharias M, Jurkowski TP, Jeltsch A. DNA Interaction of the CcrM DNA Methyltransferase: A Mutational and Modeling Study. Chembiochem 2012; 13:1304-11. [DOI: 10.1002/cbic.201200082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/06/2022]
|
44
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
45
|
Bonnist EY, Liebert K, Dryden DT, Jeltsch A, Jones AC. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding. Biophys Chem 2012; 160:28-34. [DOI: 10.1016/j.bpc.2011.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/03/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
46
|
O'Farrell HC, Musayev FN, Scarsdale JN, Rife JP. Control of substrate specificity by a single active site residue of the KsgA methyltransferase. Biochemistry 2011; 51:466-74. [PMID: 22142337 DOI: 10.1021/bi201539j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The KsgA methyltransferase is universally conserved and plays a key role in regulating ribosome biogenesis. KsgA has a complex reaction mechanism, transferring a total of four methyl groups onto two separate adenosine residues, A1518 and A1519, in the small subunit rRNA. This means that the active site pocket must accept both adenosine and N(6)-methyladenosine as substrates to catalyze formation of the final product N(6),N(6)-dimethyladenosine. KsgA is related to DNA adenosine methyltransferases, which transfer only a single methyl group to their target adenosine residue. We demonstrate that part of the discrimination between mono- and dimethyltransferase activity lies in a single residue in the active site, L114; this residue is part of a conserved motif, known as motif IV, which is common to a large group of S-adenosyl-L-methionine-dependent methyltransferases. Mutation of the leucine to a proline mimics the sequence found in DNA methyltransferases. The L114P mutant of KsgA shows diminished overall activity, and its ability to methylate the N(6)-methyladenosine intermediate to produce N(6),N(6)-dimethyladenosine is impaired; this is in contrast to a second active site mutation, N113A, which diminishes activity to a level comparable to L114P without affecting the methylation of N(6)-methyladenosine. We discuss the implications of this work for understanding the mechanism of KsgA's multiple catalytic steps.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Physiology and Molecular Biophysics, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | | | | | | |
Collapse
|
47
|
Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A 2011; 108:17957-62. [PMID: 22003125 DOI: 10.1073/pnas.1109594108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapid recognition of DNA target sites involves facilitated diffusion through which alternative sites are searched on genomic DNA. A key mechanism facilitating the localization of the target by a DNA-binding protein (DBP) is one-dimensional diffusion (sliding) in which electrostatic forces attract the protein to the DNA. As the protein reaches its target DNA site, it switches from purely electrostatic binding to a specific set of interactions with the DNA bases that also involves hydrogen bonding and van der Waals forces. High overlap between the DBP patches used for nonspecific and specific interactions with DNA may enable an immediate transition between the two binding modes following target site localization. By contrast, an imperfect overlap may result in greater frustration between the two potentially competing binding modes and consequently slower switching between them. A structural analysis of 125 DBPs indicates frustration between the two binding modes that results in a large difference between the orientations of the protein to the DNA when it slides compared to when it specifically interacts with DNA. Coarse-grained molecular dynamics simulations of in silico designed peptides comprising the full range of frustrations between the two interfaces show slower transition from nonspecific to specific DNA binding as the overlap between the patches involved in the two binding modes decreases. The complex search kinetics may regulate the search by eliminating trapping of the protein in semispecific sites while sliding.
Collapse
|
48
|
Eglen RM, Reisine T. Screening for Compounds That Modulate Epigenetic Regulation of the Transcriptome. ACTA ACUST UNITED AC 2011; 16:1137-52. [DOI: 10.1177/1087057111417871] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic control of the transciptome is a complex and highly coordinated cellular process. One critical mechanism involves DNA methylation, mediated by distinct but related DNA methyltransferases (DNMTs). Although several DNMT inhibitors are available, most are nonselective; selective DNMT inhibitors, therefore, could be optimal as therapeutics, as well acting as chemical probes to elucidate the fundamental biology of individual DNMTs. DNA methylation is a stable chemical modification, yet posttranslational modification of histones is transitory, with reversible effects on gene expression. Histone posttranslational modifications influence access of transcription factors to DNA target sites to affect gene activity. Histones are regulated by several enzymes, including acetylases (HATs), deacetylases (HDACs), methyltransferases (HMTs), and demethylases (HDMTs). Generally, HATs activate, whereas HDACs suppress gene activity. Specifically, HMTs and HDMTs can either activate or inhibit gene expression, depending on the site and extent of the methylation pattern. There is growing interest in drugs that target enzymes involved in epigenetic control. Currently, a range of high-throughput screening (HTS) technologies are used to identify selective compounds against these enzymes. This review focuses on the rationale for drug development of these enzymes, as well the utility of HTS methods used in identifying and optimizing novel selective compounds that modulate epigenetic control of the human transcriptome.
Collapse
|
49
|
Albu RF, Jurkowski TP, Jeltsch A. The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner. Nucleic Acids Res 2011; 40:1708-16. [PMID: 21926159 PMCID: PMC3287173 DOI: 10.1093/nar/gkr768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.
Collapse
Affiliation(s)
- Razvan F Albu
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
50
|
Tafvizi A, Mirny LA, van Oijen AM. Dancing on DNA: kinetic aspects of search processes on DNA. Chemphyschem 2011; 12:1481-9. [PMID: 21560221 DOI: 10.1002/cphc.201100112] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Indexed: 11/12/2022]
Abstract
Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the search for its target site, the DNA-associated protein is facing both thermodynamic and kinetic difficulties. The thermodynamic challenge lies in recognizing and tightly binding a cognate (specific) site among the billions of other (non-specific) sequences on the DNA. The kinetic difficulty lies in finding a cognate site in mere seconds amidst the crowded cellular environment that is filled with other DNA sequences and proteins. Herein, we discuss the history of the DNA search problem, the theoretical background and the various experimental methods used to study the kinetics of proteins searching for target sites on DNA.
Collapse
Affiliation(s)
- Anahita Tafvizi
- Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|