1
|
Chutoe C, Inson I, Krobthong S, Phueakphud N, Khunluck T, Wongtrakoongate P, Charoenphandhu N, Lertsuwan K. Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells. PLoS One 2024; 19:e0312851. [PMID: 39527598 PMCID: PMC11554208 DOI: 10.1371/journal.pone.0312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought. The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival. Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells. The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways. Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.
Collapse
Affiliation(s)
- Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Sun Z, Zhang H, Zhang Y, Liao L, Zhou W, Zhang F, Lian F, Huang J, Xu P, Zhang R, Lu W, Zhu M, Tao H, Yang F, Ding H, Chen S, Yue L, Zhou B, Zhang N, Tan M, Jiang H, Chen K, Liu B, Liu C, Dang Y, Luo C. Covalent Inhibitors Allosterically Block the Activation of Rho Family Proteins and Suppress Cancer Cell Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000098. [PMID: 32714746 PMCID: PMC7375240 DOI: 10.1002/advs.202000098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/27/2020] [Indexed: 05/31/2023]
Abstract
The Rho family GTPases are crucial drivers of tumor growth and metastasis. However, it is difficult to develop GTPases inhibitors due to a lack of well-characterized binding pockets for compounds. Here, through molecular dynamics simulation of the RhoA protein, a groove around cysteine 107 (Cys107) that is relatively well-conserved within the Rho family is discovered. Using a combined strategy, the novel inhibitor DC-Rhoin is discovered, which disrupts interaction of Rho proteins with guanine nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). Crystallographic studies reveal that the covalent binding of DC-Rhoin to the Cys107 residue stabilizes and captures a novel allosteric pocket. Moreover, the derivative compound DC-Rhoin04 inhibits the migration and invasion of cancer cells, through targeting this allosteric pocket of RhoA. The study reveals a novel allosteric regulatory site within the Rho family, which can be exploited for anti-metastasis drug development, and also provides a novel strategy for inhibitor discovery toward "undruggable" protein targets.
Collapse
|
3
|
Weidle UH, Birzele F, Kollmorgen G, Nopora A. Potential microRNA-related Targets for Therapeutic Intervention with Ovarian Cancer Metastasis. Cancer Genomics Proteomics 2018; 15:1-15. [PMID: 29275359 PMCID: PMC5822180 DOI: 10.21873/cgp.20061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
Treatment of disseminated epithelial ovarian cancer (EOC) is an unmet medical need. Therefore, the identification along with preclinical and clinical validation of new targets is an issue of high importance. In this review we focus on microRNAs that mediate metastasis of EOC. We summarize up-regulated metastasis-promoting and down-regulated metastasis-suppressing microRNAs. We focus on preclinical in vitro and in vivo functions as well as their metastasis-related clinical correlations. Finally, we outline modalities for therapeutic intervention and critical issues of microRNA-based therapeutics in the context of metastatic EOC.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Gwen Kollmorgen
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
4
|
Zhang Z, Cheng J, Wu Y, Qiu J, Sun Y, Tong X. LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer. Mol Med Rep 2016; 14:2465-72. [PMID: 27484896 PMCID: PMC4991663 DOI: 10.3892/mmr.2016.5572] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 07/08/2016] [Indexed: 01/20/2023] Open
Abstract
Increasing evidence suggests that the long non-coding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is widely involved in the progression and metastasis of cancer. However, the specific role of HOTAIR in ovarian carcinogenesis remains to be fully elucidated. In the present study, the levels of HOTAIR were detected in 30 paired cancer and noncancer tissues using reverse transcription-quantitative polymerase chain reaction analysis. The effect of HOTAIR on the ovarian cancer cells was examined by overexpression or small interfering RNA interference experiments. To examine the competitive endogenous RNA (ceRNAs) mechanism, a luciferase reporter assay was used. In patients with ovarian cancer, HOTAIR was significantly upregulated. Furthermore, the upregulation of HOTAIR increased the proliferation, migration and invasion of ovarian cancer cells. By contrast, the knockdown of HOTAIR repressed cell invasion and viability. HOTAIR functioned as a ceRNA, and acted as a sink for microRNA (miR)‑373, thereby regulating the expression of Rab22a. The upregulation of HOTAIR contributed to the malignant progression of ovarian cancer cells. Therefore, the positive regulation between HOTAIR and Rab22a can be partially attributed to the ceRNA regulatory network through miR-373.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Department of Gynecology and Obstetrics, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, P.R. China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, P.R. China
| | - Yi Wu
- Department of Gynecology and Obstetrics, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, P.R. China
| | - Jin Qiu
- Department of Gynecology and Obstetrics, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, P.R. China
| | - Yi Sun
- Department of Gynecology and Obstetrics, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, P.R. China
| | - Xiaowen Tong
- Department of Gynecology and Obstetrics, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
5
|
Zhang Y, Zhao FJ, Chen LL, Wang LQ, Nephew KP, Wu YL, Zhang S. MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and metastasis in ovarian cancer. Oncotarget 2015; 5:12291-303. [PMID: 25460499 PMCID: PMC4323008 DOI: 10.18632/oncotarget.2577] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Metastasis is major cause of mortality in patients with ovarian cancer. MiR-373 has been shown to play pivotal roles in tumorigenesis and metastasis; however, a role for miR-373 in ovarian cancer has not been investigated. In this study, we show that the miR-373 expression is down-regulated in human epithelial ovarian cancer (EOC) and inversely correlated with clinical stage and histological grade. Ectopic overexpression of miR-373 in human EOC cells suppressed cell invasion in vitro and metastasis in vivo, and the epithelial–mesenchymal transition process. Silencing the expression of miR-373 resulted in an increased migration and invasion of EOC cells. Using integrated bioinformatics analysis, gene expression arrays, and luciferase assay, we identified Rab22a as a direct and functional target of miR-373 in EOC cells. Expression levels of miR-373 were inversely correlated with Rab22a protein levels in human EOC tissues. Rab22a knockdown inhibited invasion and migration of EOC cells, increased E-cadherin expression, and suppressed the expression of N-cadherin. Moreover, overexpression of Rab22a abrogated miR-373-induced invasion and migration of EOC cells. Taken together, these results demonstrate that miR-373 suppresses EOC invasion and metastasis by directly targeting Rab22a gene, a new potential therapeutic target in EOC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Fu-Jun Zhao
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao-Tong University, Shanghai, 200080, China
| | - Li-Lan Chen
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Luo-Qiao Wang
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ying-Li Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China
| | - Shu Zhang
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| |
Collapse
|
6
|
Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 2015; 6:135-44. [PMID: 26317377 PMCID: PMC4601184 DOI: 10.1080/21541248.2015.1050152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023] Open
Abstract
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon.
Collapse
Affiliation(s)
- N Porther
- Department of Biological Sciences; Florida International University; Miami, FL USA
| | - MA Barbieri
- Department of Biological Sciences; Florida International University; Miami, FL USA
- Biomolecular Sciences Institute; Florida International University; Miami, FL USA
- Fairchild Tropical Botanic Garden; Coral Gables, FL USA
- International Center of Tropical Botany; Florida International University; Miami, FL USA
| |
Collapse
|
7
|
Zhang R, Zhao Y, Chu M, Wu C, Jin G, Dai J, Wang C, Hu L, Gou J, Qian C, Bai J, Wu T, Hu Z, Lin D, Shen H, Chen F. Pathway analysis for genome-wide association study of lung cancer in Han Chinese population. PLoS One 2013; 8:e57763. [PMID: 23469231 PMCID: PMC3585721 DOI: 10.1371/journal.pone.0057763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/24/2013] [Indexed: 11/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified a number of genetic variants associated with lung cancer risk. However, these loci explain only a small fraction of lung cancer hereditability and other variants with weak effect may be lost in the GWAS approach due to the stringent significance level after multiple comparison correction. In this study, in order to identify important pathways involving the lung carcinogenesis, we performed a two-stage pathway analysis in GWAS of lung cancer in Han Chinese using gene set enrichment analysis (GSEA) method. Predefined pathways by BioCarta and KEGG databases were systematically evaluated on Nanjing study (Discovery stage: 1,473 cases and 1,962 controls) and the suggestive pathways were further to be validated in Beijing study (Replication stage: 858 cases and 1,115 controls). We found that four pathways (achPathway, metPathway, At1rPathway and rac1Pathway) were consistently significant in both studies and the P values for combined dataset were 0.012, 0.010, 0.022 and 0.005 respectively. These results were stable after sensitivity analysis based on gene definition and gene overlaps between pathways. These findings may provide new insights into the etiology of lung cancer.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Minjie Chu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingmin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianwei Gou
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Qian
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
8
|
Circulating microparticles: new insights into the biochemical basis of microparticle release and activity. Basic Res Cardiol 2011; 106:911-23. [PMID: 21691898 DOI: 10.1007/s00395-011-0198-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 02/07/2023]
Abstract
Circulating microparticles released from various cell types are present in healthy individuals and the number and composition of their membrane vary in different disorders. Long considered to be cellular debris, microparticles have been recently identified as regulatory vectors of intercellular cross-talk. Indeed, circulating microparticles represent a heterogeneous mixture of spheroids of diverse surface membrane glycoproteins and lipids, with diverse cytoplasm components, the pattern of which depends on the type of stimulation and pathophysiology of parental cells. Despite extensive research into the procoagulant and proinflammatory properties of microparticles, there are few data that can provide information on the mechanism(s) of their formation and biological effects. Although several mechanisms of microparticle release have been suggested, the precise order of the events associated with key features of microparticle formation, transmembrane phosphatidylserine redistribution and cytoskeleton disruption remain to be clarified. In this review, we provide an overview of the molecular mechanisms involved in microparticle formation, as well as the diverse physiological and pathological roles they are able to undertake. Understanding the mechanism(s) governing microparticle release processes may be critical to understanding their precise role in various pathophysiological processes and thus indicate new potential routes to therapy.
Collapse
|
9
|
Mitra S, Cheng KW, Mills GB. Rab GTPases implicated in inherited and acquired disorders. Semin Cell Dev Biol 2010; 22:57-68. [PMID: 21147240 DOI: 10.1016/j.semcdb.2010.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/05/2023]
Abstract
The endocytotic machinery imports, transports and exports receptors and associated molecules between the plasma membrane and various cytoplasmic chambers resulting in selective recycling, degradation, or secretion of molecules and signaling complexes. Trafficking of receptors, growth factors, nutrients, cytokines, integrins as well as pathogens dictates the kinetics and magnitude of signal transduction cascades. Understandably, alterations in the 'fate' of such cargo complexes have profound physiologic and pathophysiologic implications. Rab GTPases regulate endocytosis by decorating intracellular vesicles and targeting these vesicles along with their cargoes to appropriate subcellular compartments. In the last decade, the number of genetic diseases driven by germline mutations in Rab GTPases or their interacting proteins, has increased and there is growing evidence of aberrant Rab GTPase function in acquired pathophysiologies such as immune deficiency, infection, obesity, diabetes and cancer.
Collapse
Affiliation(s)
- Shreya Mitra
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77054-1942, USA.
| | | | | |
Collapse
|
10
|
Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb Perspect Biol 2010; 1:a002964. [PMID: 20066108 DOI: 10.1101/cshperspect.a002964] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | |
Collapse
|
11
|
Binamé F, Pawlak G, Roux P, Hibner U. What makes cells move: requirements and obstacles for spontaneous cell motility. MOLECULAR BIOSYSTEMS 2010; 6:648-61. [PMID: 20237642 DOI: 10.1039/b915591k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Movement of individual cells and of cellular cohorts, chains or sheets requires physical forces that are established through interactions of cells with their environment. In vivo, migration occurs extensively during embryonic development and in adults during wound healing and tumorigenesis. In order to identify the molecular events involved in cell movement, in vitro systems have been developed. These have contributed to the definition of a number of molecular pathways put into play in the course of migratory behaviours, such as mesenchymal and amoeboid movement. More recently, our knowledge of migratory modes has been enriched by analyses of cells exploring and moving through three-dimensional (3D) matrices. While the cells' morphologies differ in 2D and 3D environments, the basic mechanisms that put a cellular body into motion are remarkably similar. Thus, in both 2D and 3D, the polarity of the migrating cell is initially defined by a specific subcellular localization of signalling molecules and components of molecular machines required for motion. While the polarization can be initiated either in response to extracellular signalling or be a chance occurrence, it is reinforced and sustained by positive feedback loops of signalling molecules. Second, adhesion to a substratum is necessary to generate forces that will propel the cell engaged in either mesenchymal or ameboid migration. For collective cell movement, intercellular coordination constitutes an additional requirement: a cell cohort remains stationary if individual cells pull in opposite directions. Finally, the availability of space to move into is a general requirement to set cells into motion. Lack of free space is probably the main obstacle for migration of most healthy cells in an adult multicellular organism. Thus, the requirements for cell movement are both intrinsic to the cell, involving coordinated signalling and interactions with molecular machines, and extrinsic, imposed by the physicochemical nature of the environment. In particular, the geometry and stiffness of the support act on a range of signalling pathways that induce specific cell migratory responses. These issues are discussed in the present review in the context of published work and our own data on collective migration of hepatocyte cohorts.
Collapse
Affiliation(s)
- Fabien Binamé
- CNRS, UMR 5535, IGMM, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|