1
|
Buchholz HE, Martin SA, Dorweiler JE, Radtke CM, Knier AS, Beans NB, Manogaran AL. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. Mol Biol Cell 2025; 36:ar66. [PMID: 40202836 DOI: 10.1091/mbc.e25-01-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature-sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wild-type proteins behave and are regulated in the presence of limiting Hsp70s. Using the wild-type yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ, suggesting that excess Ssa1, Hsp104, and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wild type, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wild-type cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggest that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins.
Collapse
Affiliation(s)
- Hannah E Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Sean A Martin
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Claire M Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Adam S Knier
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Natalia B Beans
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
2
|
Tserennadmid B, Nam MK, Park JH, Rhim H, Kang S. HAP/ClpP-mediated disaggregation and degradation of Mutant SOD1 aggregates: A potential therapeutic strategy for Amyotrophic lateral sclerosis (ALS). Biochem Biophys Res Commun 2025; 756:151533. [PMID: 40054065 DOI: 10.1016/j.bbrc.2025.151533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by the accumulation of misfolded Cu/Zn superoxide dismutase (SOD1) protein aggregates in motor neurons, leading to progressive motor dysfunction and ultimately death. While the molecular chaperone heat shock protein 104 (Hsp104) has been shown to reduce protein misfolding by disaggregating protein aggregates, fully degrading these disaggregated proteins remains a significant challenge. In this study, we have investigated the effects of Hsp104 and its hyperactive variant, HAP, in combination with caseinolytic protease P (CIpP), on the disaggregation and degradation of SOD1 aggregates. Using laser confocal microscopy, fluorescence loss in photobleaching (FLIP), and biomolecular fluorescence complementation (BiFC)-fluorescence resonance energy transfer (FRET) assays, we demonstrate that Hsp104 effectively disaggregates SOD1 aggregates across 14 different G93 mutants, classified based on the properties of substituted amino acids, thus restoring protein mobility. Notably, the HAP/CIpP system not only disaggregates ALS-associated SOD1G93A aggregates but also promotes their proteolytic degradation, as evidenced by a significant reduction in high-order oligomers observed through BiFC and FRET assays. This dual mechanism of action presents. the HAP/CIpP system holds significant therapeutic potential for ALS and other neurodegenerative diseases characterized by protein aggregates, as it enables both effective disaggregation and degradation of toxic protein aggregates, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Battur Tserennadmid
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min-Kyung Nam
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ju-Hwang Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Annis MY, Ravenburg CM, van Wijk KJ. Uvr motifs regulate the chloroplast Clp chaperone-protease system. TRENDS IN PLANT SCIENCE 2025; 30:269-282. [PMID: 39448301 DOI: 10.1016/j.tplants.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.
Collapse
Affiliation(s)
- Marissa Y Annis
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Claire M Ravenburg
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Axakova A, Ding M, Cote AG, Subramaniam R, Senguttuvan V, Zhang H, Weile J, Douville SV, Gebbia M, Al-Chalabi A, Wahl A, Reuter J, Hurt J, Mitchell A, Fradette S, Andersen PM, van Loggerenberg W, Roth FP. Landscapes of missense variant impact for human superoxide dismutase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640191. [PMID: 40060668 PMCID: PMC11888409 DOI: 10.1101/2025.02.25.640191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease for which important subtypes are caused by variation in the Superoxide Dismutase 1 gene SOD1. Diagnosis based on SOD1 sequencing can not only be definitive but also indicate specific therapies available for SOD1-associated ALS (SOD1-ALS). Unfortunately, SOD1-ALS diagnosis is limited by the fact that a substantial fraction (currently 26%) of ClinVar SOD1 missense variants are classified as "variants of uncertain significance" (VUS). Although functional assays can provide strong evidence for clinical variant interpretation, SOD1 assay validation is challenging, given the current incomplete and controversial understanding of SOD1-ALS disease mechanism. Using saturation mutagenesis and multiplexed cell-based assays, we measured the functional impact of over two thousand SOD1 amino acid substitutions on both enzymatic function and protein abundance. The resulting 'missense variant effect maps' not only reflect prior biochemical knowledge of SOD1 but also provide sequence-structure-function insights. Importantly, our variant abundance assay can discriminate pathogenic missense variation and provides new evidence for 41% of missense variants that had been previously reported as VUS, offering the potential to identify additional patients who would benefit from therapy approved for SOD1-ALS.
Collapse
Affiliation(s)
- Anna Axakova
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Megan Ding
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Atina G Cote
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Radha Subramaniam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Vignesh Senguttuvan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Haotian Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jochen Weile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Samuel V Douville
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Alexander Wahl
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | - Jason Reuter
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | | | | | | | | | - Warren van Loggerenberg
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Stella R, Bertoli A, Lopreiato R, Peggion C. A Twist in Yeast: New Perspectives for Studying TDP-43 Proteinopathies in S. cerevisiae. J Fungi (Basel) 2025; 11:188. [PMID: 40137226 PMCID: PMC11943067 DOI: 10.3390/jof11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
TAR DNA-binding protein 43 kDa (TDP-43) proteinopathies are a group of neurodegenerative diseases (NDs) characterized by the abnormal accumulation of the TDP-43 protein in neurons and glial cells. These proteinopathies are associated with several NDs, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and some forms of Alzheimer's disease. Yeast models have proven valuable in ND research due to their simplicity, genetic tractability, and the conservation of many cellular processes shared with higher eukaryotes. For several decades, Saccharomyces cerevisiae has been used as a model organism to study the behavior and toxicity of TDP-43, facilitating the identification of genes and pathways that either exacerbate or mitigate its toxic effects. This review will discuss evidence showing that yeast models of TDP-43 exhibit defects in proteostasis, mitochondrial function, autophagy, and RNA metabolism, which are key features of TDP-43-related NDs. Additionally, we will explore how modulating proteins involved in these processes reduce TDP-43 toxicity, aiding in restoring normal TDP-43 function or preventing its pathological aggregation. These findings highlight potential therapeutic targets for the treatment of TDP-43-related diseases.
Collapse
Affiliation(s)
- Roberto Stella
- Laboratorio Farmaci Veterinari e Ricerca, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
- Neuroscience Institute, Consiglio Nazionale Delle Ricerche, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Buchholz HE, Martin SA, Dorweiler JE, Radtke CM, Knier AS, Beans NB, Manogaran AL. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633617. [PMID: 39896508 PMCID: PMC11785122 DOI: 10.1101/2025.01.17.633617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wildtype proteins behave and are regulated in the presence of limiting Hsp70s. Using the wildtype yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ, suggesting that excess Ssa1, Hsp104 and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wildtype, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wildtype cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggests that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins.
Collapse
Affiliation(s)
- Hannah E Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Sean A Martin
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Claire M Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Adam S Knier
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Natalia B Beans
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| |
Collapse
|
7
|
Oh J, Catherine C, Kim ES, Min KW, Jeong HC, Kim H, Kim M, Ahn SH, Lukianenko N, Jo MG, Bak HS, Lim S, Kim YK, Kim HM, Lee SB, Cho H. Engineering a membrane protein chaperone to ameliorate the proteotoxicity of mutant huntingtin. Nat Commun 2025; 16:737. [PMID: 39824813 PMCID: PMC11742450 DOI: 10.1038/s41467-025-56030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates. Using yeast toxicity-based screening with a random mutant library, we identify two yeast PEX19 variants and engineer equivalent mutations into human PEX19 (hsPEX19). These variants effectively delay mHttex1 aggregation in vitro and in cellular HD models. The mutated hydrophobic residue in the α4 helix of hsPEX19 variants binds to the N17 domain of mHttex1, thereby inhibiting the initial aggregation process. Overexpression of the hsPEX19-FV variant rescues HD-associated phenotypes in primary striatal neurons and in Drosophila. Overall, our data reveal that engineering ATP-independent membrane protein chaperones is a promising therapeutic approach for rational targeting of mHttex1 aggregation in HD.
Collapse
Affiliation(s)
- Jeonghyun Oh
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Christy Catherine
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Eun Seon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kwang Wook Min
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hae Chan Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyojin Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Mijin Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seung Hae Ahn
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Nataliia Lukianenko
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Gu Jo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyeon Seok Bak
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Hyunju Cho
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 PMCID: PMC11815640 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Wu H, Wang LC, Sow BM, Leow D, Zhu J, Gallo KM, Wilsbach K, Gupta R, Ostrow LW, Yeo CJJ, Sobota RM, Li R. TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport. Nat Commun 2024; 15:9026. [PMID: 39424779 PMCID: PMC11489672 DOI: 10.1038/s41467-024-52706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins. In particular, TDP43, implicated in Amyotrophic Lateral Sclerosis (ALS), partitions dynamically between two distinct types of aggregates: stress granule and a previously unknown non-dynamic (solid-like) inclusion at the ER exit sites (ERES). TDP43-ERES co-aggregation is induced by diverse proteotoxic stresses and observed in the motor neurons of ALS patients. Such aggregation causes retention of secretory cargos at ERES and therefore delays ER-to-Golgi transport, providing a link between TDP43 aggregation and compromised cellular function in ALS patients.
Collapse
Affiliation(s)
- Hongyi Wu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Belle M Sow
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Damien Leow
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Kathryn M Gallo
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathleen Wilsbach
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshni Gupta
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Lyle W Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Crystal J J Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, UK
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Buchholz HE, Dorweiler JE, Guereca S, Wisniewski BT, Shorter J, Manogaran AL. The middle domain of Hsp104 can ensure substrates are functional after processing. PLoS Genet 2024; 20:e1011424. [PMID: 39361717 PMCID: PMC11478891 DOI: 10.1371/journal.pgen.1011424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/15/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Molecular chaperones play a central role in protein disaggregation. However, the molecular determinants that regulate this process are poorly understood. Hsp104 is an AAA+ ATPase that disassembles stress granules and amyloids in yeast through collaboration with Hsp70 and Hsp40. In vitro studies show that Hsp104 processes different types of protein aggregates by partially translocating or threading polypeptides through the central pore of the hexamer. However, it is unclear how Hsp104 processing influences client protein function in vivo. The middle domain (MD) of Hsp104 regulates ATPase activity and interactions with Hsp70. Here, we tested how MD variants, Hsp104A503S and Hsp104A503V, process different protein aggregates. We establish that engineered MD variants fail to resolve stress granules but retain prion fragmentation activity required for prion propagation. Using the Sup35 prion protein, our in vitro and in vivo data indicate that the MD variants can disassemble Sup35 aggregates, but the disaggregated protein has reduced GTPase and translation termination activity. These results suggest that the middle domain can play a role in sensing certain substrates and plays an essential role in ensuring the processed protein is functional.
Collapse
Affiliation(s)
- Hannah E. Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Sam Guereca
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brett T. Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
12
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
15
|
Chen S, Puri A, Bell B, Fritsche J, Palacios HH, Balch M, Sprunger ML, Howard MK, Ryan JJ, Haines JN, Patti GJ, Davis AA, Jackrel ME. HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species. Nat Commun 2024; 15:2436. [PMID: 38499535 PMCID: PMC10948756 DOI: 10.1038/s41467-024-46538-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Anuradhika Puri
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Braxton Bell
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Joseph Fritsche
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Hector H Palacios
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Maurie Balch
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Jessica N Haines
- Department of Neurology, Washington University, St. Louis, MO, 63130, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University, St. Louis, MO, 63130, USA
| | - Albert A Davis
- Department of Neurology, Washington University, St. Louis, MO, 63130, USA
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
16
|
Khalil B, Linsenmeier M, Smith CL, Shorter J, Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol Neurodegener 2024; 19:8. [PMID: 38254150 PMCID: PMC10804745 DOI: 10.1186/s13024-023-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a disease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - Miriam Linsenmeier
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A..
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A..
| |
Collapse
|
17
|
Tomaszewski A, Wang R, Sandoval E, Zhu J, Liu J, Li R. Solid-to-liquid phase transition in the dissolution of cytosolic misfolded-protein aggregates. iScience 2023; 26:108334. [PMID: 38025775 PMCID: PMC10663836 DOI: 10.1016/j.isci.2023.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Accumulation of protein aggregates is a hallmark of cellular aging and degenerative disorders. This could result from either increased protein misfolding and aggregation or impaired dissolution of aggregates formed under stress, the latter of which is poorly understood. In this study, we employed quantitative live-cell imaging to investigate the dynamic process of protein disaggregation in yeast. We show that protein aggregates formed upon heat stress are solid condensates, but after stress attenuation these protein aggregates first transition into a liquid-like state during their dissolution. This solid-to-liquid phase transition (SLPT) accompanies the reduction in aggregate number due to the fusion of the liquid condensates. The chaperone activity of Hsp104, a Clp/HSP100 family chaperone, is required for both SLPT and subsequent dispersal of the liquid condensates. Sse1, a yeast HSP110 chaperone, also facilitates SLPT. These results illuminate an unexpected mechanistic framework of cellular control over protein disaggregation upon stress attenuation.
Collapse
Affiliation(s)
- Alexis Tomaszewski
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rebecca Wang
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Eduardo Sandoval
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jian Liu
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Science, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
18
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
19
|
Webber CJ, Murphy CN, Rondón-Ortiz AN, van der Spek SJF, Kelly EX, Lampl NM, Chiesa G, Khalil AS, Emili A, Wolozin B. Human herpesvirus 8 ORF57 protein is able to reduce TDP-43 pathology: network analysis identifies interacting pathways. Hum Mol Genet 2023; 32:2966-2980. [PMID: 37522762 PMCID: PMC10549787 DOI: 10.1093/hmg/ddad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.
Collapse
Affiliation(s)
- Chelsea J Webber
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Caroline N Murphy
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alejandro N Rondón-Ortiz
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sophie J F van der Spek
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Elena X Kelly
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Noah M Lampl
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Shrimali PC, Chen S, Das A, Dreher R, Howard MK, Ryan JJ, Buck J, Kim D, Sprunger ML, Rudra JS, Jackrel ME. Amyloidogenic propensity of self-assembling peptides and their adjuvant potential for use as DNA vaccines. Acta Biomater 2023; 169:464-476. [PMID: 37586449 DOI: 10.1016/j.actbio.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
De novo designed peptides that self-assemble into cross-β rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-β peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-β-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-β rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.
Collapse
Affiliation(s)
- Paresh C Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Anirban Das
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Rachel Dreher
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy Buck
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Darren Kim
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
21
|
Mack KL, Kim H, Barbieri EM, Lin J, Braganza S, Jackrel ME, DeNizio JE, Yan X, Chuang E, Tariq A, Cupo RR, Castellano LM, Caldwell KA, Caldwell GA, Shorter J. Tuning Hsp104 specificity to selectively detoxify α-synuclein. Mol Cell 2023; 83:3314-3332.e9. [PMID: 37625404 PMCID: PMC10530207 DOI: 10.1016/j.molcel.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvanne Braganza
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Tariq
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Guo L, Mann JR, Mauna JC, Copley KE, Wang H, Rubien JD, Odeh HM, Lin J, Lee BL, Ganser L, Robinson E, Kim KM, Murthy AC, Paul T, Portz B, Gleixner AM, Diaz Z, Carey JL, Smirnov A, Padilla G, Lavorando E, Espy C, Shang Y, Huang EJ, Chesi A, Fawzi NL, Myong S, Donnelly CJ, Shorter J. Defining RNA oligonucleotides that reverse deleterious phase transitions of RNA-binding proteins with prion-like domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.555754. [PMID: 37732211 PMCID: PMC10508739 DOI: 10.1101/2023.09.04.555754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
RNA-binding proteins with prion-like domains, such as FUS and TDP-43, condense into functional liquids, which can transform into pathological fibrils that underpin fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Here, we define short RNAs (24-48 nucleotides) that prevent FUS fibrillization by promoting liquid phases, and distinct short RNAs that prevent and, remarkably, reverse FUS condensation and fibrillization. These activities require interactions with multiple RNA-binding domains of FUS and are encoded by RNA sequence, length, and structure. Importantly, we define a short RNA that dissolves aberrant cytoplasmic FUS condensates, restores nuclear FUS, and mitigates FUS proteotoxicity in optogenetic models and human motor neurons. Another short RNA dissolves aberrant cytoplasmic TDP-43 condensates, restores nuclear TDP-43, and mitigates TDP-43 proteotoxicity. Since short RNAs can be effectively delivered to the human brain, these oligonucleotides could have therapeutic utility for ALS/FTD and related disorders.
Collapse
|
23
|
Naskar A, Nayak A, Salaikumaran MR, Vishal SS, Gopal PP. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders. Front Mol Neurosci 2023; 16:1242925. [PMID: 37720552 PMCID: PMC10502346 DOI: 10.3389/fnmol.2023.1242925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Liquid-liquid phase separation results in the formation of dynamic biomolecular condensates, also known as membrane-less organelles, that allow for the assembly of functional compartments and higher order structures within cells. Multivalent, reversible interactions between RNA-binding proteins (RBPs), including FUS, TDP-43, and hnRNPA1, and/or RNA (e.g., RBP-RBP, RBP-RNA, RNA-RNA), result in the formation of ribonucleoprotein (RNP) condensates, which are critical for RNA processing, mRNA transport, stability, stress granule assembly, and translation. Stress granules, neuronal transport granules, and processing bodies are examples of cytoplasmic RNP condensates, while the nucleolus and Cajal bodies are representative nuclear RNP condensates. In neurons, RNP condensates promote long-range mRNA transport and local translation in the dendrites and axon, and are essential for spatiotemporal regulation of gene expression, axonal integrity and synaptic function. Mutations of RBPs and/or pathologic mislocalization and aggregation of RBPs are hallmarks of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. ALS/FTD-linked mutations of RBPs alter the strength and reversibility of multivalent interactions with other RBPs and RNAs, resulting in aberrant phase transitions. These aberrant RNP condensates have detrimental functional consequences on mRNA stability, localization, and translation, and ultimately lead to compromised axonal integrity and synaptic function in disease. Pathogenic protein aggregation is dependent on various factors, and aberrant dynamically arrested RNP condensates may serve as an initial nucleation step for pathologic aggregate formation. Recent studies have focused on identifying mechanisms by which neurons resolve phase transitioned condensates to prevent the formation of pathogenic inclusions/aggregates. The present review focuses on the phase separation of neurodegenerative disease-linked RBPs, physiological functions of RNP condensates, and the pathologic role of aberrant phase transitions in neurodegenerative disease, particularly ALS/FTD. We also examine cellular mechanisms that contribute to the resolution of aberrant condensates in neurons, and potential therapeutic approaches to resolve aberrantly phase transitioned condensates at a molecular level.
Collapse
Affiliation(s)
- Aditi Naskar
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | - Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Howard MK, Miller KR, Sohn BS, Ryan JJ, Xu A, Jackrel ME. Probing the drivers of Staphylococcus aureus biofilm protein amyloidogenesis and disrupting biofilms with engineered protein disaggregases. mBio 2023; 14:e0058723. [PMID: 37195208 PMCID: PMC10470818 DOI: 10.1128/mbio.00587-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are the primary proteinaceous component of Staphylococcus aureus biofilms. Residence in the protective environment of biofilms allows bacteria to rapidly evolve and acquire antimicrobial resistance, which can lead to persistent infections such as those caused by methicillin-resistant S. aureus (MRSA). In their soluble form, PSMs hinder the immune response of the host and can increase the virulence potential of MRSA. PSMs also self-assemble into insoluble functional amyloids that contribute to the structural scaffold of biofilms. The specific roles of PSM peptides in biofilms remain poorly understood. Here, we report the development of a genetically tractable yeast model system for studying the properties of PSMα peptides. Expression of PSMα peptides in yeast drives the formation of toxic insoluble aggregates that adopt vesicle-like structures. Using this system, we probed the molecular drivers of PSMα aggregation to delineate key similarities and differences among the PSMs and identified a crucial residue that drives PSM features. Biofilms are a major public health threat; thus, biofilm disruption is a key goal. To solubilize aggregates comprised of a diverse range of amyloid and amyloid-like species, we have developed engineered variants of Hsp104, a hexameric AAA+ protein disaggregase from yeast. Here, we demonstrate that potentiated Hsp104 variants counter the toxicity and aggregation of PSMα peptides. Further, we demonstrate that a potentiated Hsp104 variant can drive the disassembly of preformed S. aureus biofilms. We suggest that this new yeast model can be a powerful platform for screening for agents that disrupt PSM aggregation and that Hsp104 disaggregases could be a promising tool for the safe enzymatic disruption of biofilms. IMPORTANCE Biofilms are complex mixtures secreted by bacteria that form a material in which the bacteria can become embedded. This process transforms the properties of the bacteria, and they become more resistant to removal, which can give rise to multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we study phenol-soluble modulins (PSMs), which are amyloidogenic proteins secreted by S. aureus, that become incorporated into biofilms. Biofilms are challenging to study, so we have developed a new genetically tractable yeast model to study the PSMs. We used our system to learn about several key features of the PSMs. We also demonstrate that variants of an amyloid disaggregase, Hsp104, can disrupt the PSMs and, more importantly, dissolve preformed S. aureus biofilms. We propose that our system can be a powerful screening tool and that Hsp104 disaggregases may be a new avenue to explore for biofilm disruption agents.
Collapse
Affiliation(s)
- Matthew K. Howard
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Karlie R. Miller
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Jeremy J. Ryan
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Andy Xu
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
25
|
Chen S, Puri A, Bell B, Fritsche J, Palacios H, Balch M, Sprunger M, Howard M, Patterson J, Patti G, Davis A, Jackrel M. HtrA1 prevents and reverses α-synuclein aggregation, rendering it non-toxic and seeding incompetent. RESEARCH SQUARE 2023:rs.3.rs-2570571. [PMID: 37674720 PMCID: PMC10479434 DOI: 10.21203/rs.3.rs-2570571/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Parkinson disease (PD) is closely linked to the misfolding and accumulation of α-synuclein (α-syn) into Lewy bodies. HtrA1 is a PDZ serine protease that degrades fibrillar tau, which is associated with Alzheimer disease (AD). Further, inactivating mutations to mitochondrial HtrA2 have been implicated in PD. Here, we establish that HtrA1 inhibits the aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We demonstrate that the protease domain of HtrA1 is necessary and sufficient for inhibition of aggregation, yet this activity is independent of HtrA1 proteolytic activity. Further, we find that HtrA1 also disaggregates preformed α-syn fibrils, which may promote their clearance. Treatment of α-syn fibrils with HtrA1 renders α-syn incapable of seeding the aggregation of endogenous α-syn in mammalian biosensor cells. We find that HtrA1 remodels α-syn by specifically targeting the NAC domain, which is the key domain that catalyzes α-syn oligomerization and fibrillization. Finally, in a primary neuron model of α-syn aggregation, we show that HtrA1 and its proteolytically inactive form both detoxify α-syn and prevent the formation of hyperphosphorylated α-syn accumulations. Our findings suggest that HtrA1 prevents aggregation and promotes disaggregation of multiple disease-associated proteins, and may be a therapeutic target for treating a range of neurodegenerative disorders.
Collapse
|
26
|
Stanford KE, Zhao X, Kim N, Masison DC, Greene LE. Overexpression of Hsp104 by Causing Dissolution of the Prion Seeds Cures the Yeast [ PSI+] Prion. Int J Mol Sci 2023; 24:10833. [PMID: 37446010 DOI: 10.3390/ijms241310833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The yeast Sup35 protein misfolds into the infectious [PSI+] prion, which is then propagated by the severing activity of the molecular chaperone, Hsp104. Unlike other yeast prions, this prion is unique in that it is efficiently cured by the overexpression as well as the inactivation of Hsp104. However, it is controversial whether curing by overexpression is due to the dissolution of the prion seeds by the trimming activity of Hsp104 or the asymmetric segregation of the prion seeds between mother and daughter cells which requires cell division. To answer this question, we conducted experiments and found no difference in the extent of curing between mother and daughter cells when half of the cells were cured by Hsp104 overexpression in one generation. Furthermore, curing was not affected by the lack of Sir2 expression, which was reported to be required for asymmetric segregation of the [PSI+] seeds. More importantly, when either hydroxyurea or ethanol were used to inhibit cell division, the extent of curing by Hsp104 overexpression was not significantly reduced. Therefore, the curing of [PSI+] by Hsp104 overexpression is not due to asymmetric segregation of the prion seeds, but rather their dissolution by Hsp104.
Collapse
Affiliation(s)
- Katherine E Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Kim
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Gupta A, Lentzsch AM, Siegel A, Yu Z, Chio US, Cheng Y, Shan SO. Dodecamer assembly of a metazoan AAA + chaperone couples substrate extraction to refolding. SCIENCE ADVANCES 2023; 9:eadf5336. [PMID: 37163603 PMCID: PMC10171807 DOI: 10.1126/sciadv.adf5336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Ring-forming AAA+ chaperones solubilize protein aggregates and protect organisms from proteostatic stress. In metazoans, the AAA+ chaperone Skd3 in the mitochondrial intermembrane space (IMS) is critical for human health and efficiently refolds aggregated proteins, but its underlying mechanism is poorly understood. Here, we show that Skd3 harbors both disaggregase and protein refolding activities enabled by distinct assembly states. High-resolution structures of Skd3 hexamers in distinct conformations capture ratchet-like motions that mediate substrate extraction. Unlike previously described disaggregases, Skd3 hexamers further assemble into dodecameric cages in which solubilized substrate proteins can attain near-native states. Skd3 mutants defective in dodecamer assembly retain disaggregase activity but are impaired in client refolding, linking the disaggregase and refolding activities to the hexameric and dodecameric states of Skd3, respectively. We suggest that Skd3 is a combined disaggregase and foldase, and this property is particularly suited to meet the complex proteostatic demands in the mitochondrial IMS.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alfred M. Lentzsch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
28
|
Lim SM, Nahm M, Kim SH. Proteostasis and Ribostasis Impairment as Common Cell Death Mechanisms in Neurodegenerative Diseases. J Clin Neurol 2023; 19:101-114. [PMID: 36854331 PMCID: PMC9982182 DOI: 10.3988/jcn.2022.0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 03/02/2023] Open
Abstract
The cellular homeostasis of proteins (proteostasis) and RNA metabolism (ribostasis) are essential for maintaining both the structure and function of the brain. However, aging, cellular stress conditions, and genetic contributions cause disturbances in proteostasis and ribostasis that lead to protein misfolding, insoluble aggregate deposition, and abnormal ribonucleoprotein granule dynamics. In addition to neurons being primarily postmitotic, nondividing cells, they are more susceptible to the persistent accumulation of abnormal aggregates. Indeed, defects associated with the failure to maintain proteostasis and ribostasis are common pathogenic components of age-related neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, the neuronal deposition of misfolded and aggregated proteins can cause both increased toxicity and impaired physiological function, which lead to neuronal dysfunction and cell death. There is recent evidence that irreversible liquid-liquid phase separation (LLPS) is responsible for the pathogenic aggregate formation of disease-related proteins, including tau, α-synuclein, and RNA-binding proteins, including transactive response DNA-binding protein 43, fused in sarcoma, and heterogeneous nuclear ribonucleoprotein A1. Investigations of LLPS and its control therefore suggest that chaperone/disaggregase, which reverse protein aggregation, are valuable therapeutic targets for effective treatments for neurological diseases. Here we review and discuss recent studies to highlight the importance of understanding the common cell death mechanisms of proteostasis and ribostasis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Su Min Lim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Seung Hyun Kim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
29
|
Kim M, Swenson J, McLoughlin F, Vierling E. Mutation of the polyadenylation complex subunit CstF77 reveals that mRNA 3' end formation and HSP101 levels are critical for a robust heat stress response. THE PLANT CELL 2023; 35:924-941. [PMID: 36472129 PMCID: PMC9940869 DOI: 10.1093/plcell/koac351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Heat shock protein 101 (HSP101) in plants, and bacterial and yeast orthologs, is essential for thermotolerance. To investigate thermotolerance mechanisms involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a missense HSP101 allele (hot1-4). hot1-4 plants are sensitive to acclimation heat treatments that are otherwise permissive for HSP101 null mutants, indicating that the hot1-4 protein is toxic. We report one suppressor (shot2, suppressor of hot1-4 2) has a missense mutation of a conserved residue in CLEAVAGE STIMULATION FACTOR77 (CstF77), a subunit of the polyadenylation complex critical for mRNA 3' end maturation. We performed ribosomal RNA depletion RNA-Seq and captured transcriptional readthrough with a custom bioinformatics pipeline. Acclimation heat treatment caused transcriptional readthrough in hot1-4 shot2, with more readthrough in heat-induced genes, reducing the levels of toxic hot1-4 protein and suppressing hot1-4 heat sensitivity. Although shot2 mutants develop like the wild type in the absence of stress and survive mild heat stress, reduction of heat-induced genes and decreased HSP accumulation makes shot2 in HSP101 null and wild-type backgrounds sensitive to severe heat stress. Our study reveals the critical function of CstF77 for 3' end formation of mRNA and the dominant role of HSP101 in dictating the outcome of severe heat stress.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - John Swenson
- Program for Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Fionn McLoughlin
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
30
|
Saha I, Yuste-Checa P, Da Silva Padilha M, Guo Q, Körner R, Holthusen H, Trinkaus VA, Dudanova I, Fernández-Busnadiego R, Baumeister W, Sanders DW, Gautam S, Diamond MI, Hartl FU, Hipp MS. The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system. Nat Commun 2023; 14:560. [PMID: 36732333 PMCID: PMC9894937 DOI: 10.1038/s41467-023-36058-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.
Collapse
Affiliation(s)
- Itika Saha
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Miguel Da Silva Padilha
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152, Martinsried, Germany.,Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany.,Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Qiang Guo
- Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Hauke Holthusen
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Victoria A Trinkaus
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152, Martinsried, Germany.,Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany.,Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Rubén Fernández-Busnadiego
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Institute of Neuropathology, University Medical Center Göttingen, 37099, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Wolfgang Baumeister
- Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Saurabh Gautam
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Boehringer Ingelheim International GmbH, 55216, Ingelheim, Germany.,ViraTherapeutics GmbH, 6063, Rum, Austria
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. .,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
31
|
Fare CM, Rhine K, Lam A, Myong S, Shorter J. A minimal construct of nuclear-import receptor Karyopherin-β2 defines the regions critical for chaperone and disaggregation activity. J Biol Chem 2023; 299:102806. [PMID: 36529289 PMCID: PMC9860449 DOI: 10.1016/j.jbc.2022.102806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Karyopherin-β2 (Kapβ2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapβ2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapβ2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapβ2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapβ2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapβ2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapβ2 recapitulate all salient features of Kapβ2 activity. By contrast, Kapβ2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapβ2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Lam
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
33
|
Knier AS, Davis EE, Buchholz HE, Dorweiler JE, Flannagan LE, Manogaran AL. The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation. Front Mol Neurosci 2022; 15:1050472. [PMID: 36590917 PMCID: PMC9802906 DOI: 10.3389/fnmol.2022.1050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline.
Collapse
|
34
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
35
|
Differential contributions of the proteasome, autophagy, and chaperones to the clearance of arsenite-induced protein aggregates in yeast. J Biol Chem 2022; 298:102680. [PMID: 36356902 PMCID: PMC9723941 DOI: 10.1016/j.jbc.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The poisonous metalloid arsenite induces widespread misfolding and aggregation of nascent proteins in vivo, and this mode of toxic action might underlie its suspected role in the pathology of certain protein misfolding diseases. Evolutionarily conserved protein quality-control systems protect cells against arsenite-mediated proteotoxicity, and herein, we systematically assessed the contribution of the ubiquitin-proteasome system, the autophagy-vacuole pathway, and chaperone-mediated disaggregation to the clearance of arsenite-induced protein aggregates in Saccharomyces cerevisiae. We show that the ubiquitin-proteasome system is the main pathway that clears aggregates formed during arsenite stress and that cells depend on this pathway for optimal growth. The autophagy-vacuole pathway and chaperone-mediated disaggregation both contribute to clearance, but their roles appear less prominent than the ubiquitin-proteasome system. Our in vitro assays with purified components of the yeast disaggregating machinery demonstrated that chaperone binding to aggregates formed in the presence of arsenite is impaired. Hsp104 and Hsp70 chaperone activity was unaffected by arsenite, suggesting that this metalloid influences aggregate structure, making them less accessible for chaperone-mediated disaggregation. We further show that the defect in chaperone-mediated refolding of a model protein was abrogated in a cysteine-free version of the substrate, suggesting that arsenite directly modifies cysteines in non-native target proteins. In conclusion, our study sheds novel light on the differential contributions of protein quality-control systems to aggregate clearance and cell proliferation and extends our understanding of how these systems operate during arsenite stress.
Collapse
|
36
|
Cupo RR, Rizo AN, Braun GA, Tse E, Chuang E, Gupta K, Southworth DR, Shorter J. Unique structural features govern the activity of a human mitochondrial AAA+ disaggregase, Skd3. Cell Rep 2022; 40:111408. [PMID: 36170828 PMCID: PMC9584538 DOI: 10.1016/j.celrep.2022.111408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022] Open
Abstract
The AAA+ protein, Skd3 (human CLPB), solubilizes proteins in the mitochondrial intermembrane space, which is critical for human health. Skd3 variants with defective protein-disaggregase activity cause severe congenital neutropenia (SCN) and 3-methylglutaconic aciduria type 7 (MGCA7). How Skd3 disaggregates proteins remains poorly understood. Here, we report a high-resolution structure of a Skd3-substrate complex. Skd3 adopts a spiral hexameric arrangement that engages substrate via pore-loop interactions in the nucleotide-binding domain (NBD). Substrate-bound Skd3 hexamers stack head-to-head via unique, adaptable ankyrin-repeat domain (ANK)-mediated interactions to form dodecamers. Deleting the ANK linker region reduces dodecamerization and disaggregase activity. We elucidate apomorphic features of the Skd3 NBD and C-terminal domain that regulate disaggregase activity. We also define how Skd3 subunits collaborate to disaggregate proteins. Importantly, SCN-linked subunits sharply inhibit disaggregase activity, whereas MGCA7-linked subunits do not. These advances illuminate Skd3 structure and mechanism, explain SCN and MGCA7 inheritance patterns, and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Ryan R Cupo
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandrea N Rizo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel A Braun
- Chemistry and Chemical Biology Graduate Program, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Harari A, Zoltsman G, Levin T, Rosenzweig R. Hsp104 N-terminal domain interaction with substrates plays a regulatory role in protein disaggregation. FEBS J 2022; 289:5359-5377. [PMID: 35305079 PMCID: PMC9541529 DOI: 10.1111/febs.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 01/19/2023]
Abstract
Heat shock protein 104 (Hsp104) protein disaggregases are powerful molecular machines that harness the energy derived from ATP binding and hydrolysis to disaggregate a wide range of protein aggregates and amyloids, as well as to assist in yeast prion propagation. Little is known, however, about how Hsp104 chaperones recognize such a diversity of substrates, or indeed the contribution of the substrate‐binding N‐terminal domain (NTD) to Hsp104 function. Herein, we present a NMR spectroscopy study, which structurally characterizes the Hsp104 NTD‐substrate interaction. We show that the NTD includes a substrate‐binding groove that specifically recognizes exposed hydrophobic stretches in unfolded, misfolded, amyloid and prion substrates of Hsp104. In addition, we find that the NTD itself has chaperoning activities which help to protect the exposed hydrophobic regions of its substrates from further misfolding and aggregation, thereby priming them for threading through the Hsp104 central channel. We further demonstrate that mutations to this substrate‐binding groove abolish Hsp104 activation by client proteins and keep the chaperone in a partially inhibited state. The Hsp104 variant with these mutations also exhibited significantly reduced disaggregation activity and cell survival at extreme temperatures. Together, our findings provide both a detailed characterization of the NTD‐substrate complex and insight into the functional regulatory role of the NTD in protein disaggregation and yeast thermotolerance.
Collapse
Affiliation(s)
- Anna Harari
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
39
|
Ojaimi YA, Dangoumau A, Alarcan H, Hergesheimer R, Vourc'h P, Corcia P, Lanznaster D, Blasco H. TAR DNA-binding protein of 43 kDa (TDP-43) and amyotrophic lateral sclerosis (ALS): a promising therapeutic target. Expert Opin Ther Targets 2022; 26:575-592. [PMID: 35652285 DOI: 10.1080/14728222.2022.2083958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that lacks an effective treatment. Aggregates of the TAR DNA-binding protein-43 (TDP-43) are observed in 97% of all ALS cases, thus making this protein a major therapeutic target in ALS. . AREAS COVERED The authors describe the major cellular functions of TDP-43 and the features and consequences of TDP-43 proteinopathy. Drawing from fundamental and preclinical studies on cellular and animal TDP-43 models of ALS and selected clinical trials, the major pathways that have been targeted for the mitigation of TDP-43 pathology in ALS are discussed. The authors provide insights on the approaches targeting the tendency of TDP-43 for aggregation, defective nucleocytoplasmic transport, dysfunctional proteostasis, abnormal stress granule dynamics, and pathological post-translational modifications of TDP-43. EXPERT OPINION The complexity of ALS and TDP-43 proteinopathy generates challenges for the development of novel therapeutic approaches. However, the critical involvement of TDP-43 in the initiation and progression of ALS, makes it a promising therapeutic target. Further research should be centered on the development of precision strategies, consideration of patient subgroups, the prevention of the mislocalization of TDP-43 and restoration of the lost functions of TPD-43. .
Collapse
Affiliation(s)
| | | | - Hugo Alarcan
- UMR 1253 iBrain, Université de Tours, Tours, France.,Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | | | - Patrick Vourc'h
- UMR 1253 iBrain, Université de Tours, Tours, France.,Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | - Philippe Corcia
- Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France.,Service de neurologie, CHRU Bretonneau, Tours, France
| | | | - Hélène Blasco
- UMR 1253 iBrain, Université de Tours, Tours, France.,Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| |
Collapse
|
40
|
Costa MD, Maciel P. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Cell Mol Life Sci 2022; 79:274. [PMID: 35503478 PMCID: PMC11071829 DOI: 10.1007/s00018-022-04280-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
Polyglutamine (PolyQ) diseases include a group of inherited neurodegenerative disorders caused by unstable expansions of CAG trinucleotide repeats in the coding region of specific genes. Such genetic alterations produce abnormal proteins containing an unusually long PolyQ tract that renders them more prone to aggregate and cause toxicity. Although research in the field in the last years has contributed significantly to the knowledge of the biological mechanisms implicated in these diseases, effective treatments are still lacking. In this review, we revisit work performed in models of PolyQ diseases, namely the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and provide a critical overview of the high-throughput unbiased genetic screens that have been performed using these systems to identify novel genetic modifiers of PolyQ diseases. These approaches have revealed a wide variety of cellular processes that modulate the toxicity and aggregation of mutant PolyQ proteins, reflecting the complexity of these disorders and demonstrating how challenging the development of therapeutic strategies can be. In addition to the unbiased large-scale genetic screenings in non-vertebrate models, complementary studies in mammalian systems, closer to humans, have contributed with novel genetic modifiers of PolyQ diseases, revealing neuronal function and inflammation as key disease modulators. A pathway enrichment analysis, using the human orthologues of genetic modifiers of PolyQ diseases clustered modifier genes into major themes translatable to the human disease context, such as protein folding and transport as well as transcription regulation. Innovative genetic strategies of genetic manipulation, together with significant advances in genomics and bioinformatics, are taking modifier genetic studies to more realistic disease contexts. The characterization of PolyQ disease modifier pathways is of extreme relevance to reveal novel therapeutic possibilities to delay disease onset and progression in patients.
Collapse
Affiliation(s)
- Marta Daniela Costa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
41
|
Sprunger ML, Lee K, Sohn BS, Jackrel ME. Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 2022; 25:103900. [PMID: 35252808 PMCID: PMC8889142 DOI: 10.1016/j.isci.2022.103900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.
Collapse
Affiliation(s)
- Macy L. Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Ken Lee
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
42
|
Bharathi V, Bajpai A, Parappuram IT, Patel BK. Elevated constitutive expression of Hsp40 chaperone Sis1 reduces TDP-43 aggregation-induced oxidative stress in Ire1 pathway dependent-manner in yeast TDP-43 proteinopathy model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2022; 595:28-34. [DOI: 10.1016/j.bbrc.2022.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
|
43
|
Nakagawa Y, Shen HCH, Komi Y, Sugiyama S, Kurinomaru T, Tomabechi Y, Krayukhina E, Okamoto K, Yokoyama T, Shirouzu M, Uchiyama S, Inaba M, Niwa T, Sako Y, Taguchi H, Tanaka M. Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system. Nat Chem Biol 2022; 18:321-331. [PMID: 35177839 DOI: 10.1038/s41589-021-00951-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/23/2021] [Indexed: 01/17/2023]
Abstract
Disaggregation of amyloid fibrils is a fundamental biological process required for amyloid propagation. However, due to the lack of experimental systems, the molecular mechanism of how amyloid is disaggregated by cellular factors remains poorly understood. Here, we established a robust in vitro reconstituted system of yeast prion propagation and found that heat-shock protein 104 (Hsp104), Ssa1 and Sis1 chaperones are essential for efficient disaggregation of Sup35 amyloid. Real-time imaging of single-molecule fluorescence coupled with the reconstitution system revealed that amyloid disaggregation is achieved by ordered, timely binding of the chaperones to amyloid. Remarkably, we uncovered two distinct prion strain conformation-dependent modes of disaggregation, fragmentation and dissolution. We characterized distinct chaperone dynamics in each mode and found that transient, repeated binding of Hsp104 to the same site of amyloid results in fragmentation. These findings provide a physical foundation for otherwise puzzling in vivo observations and for therapeutic development for amyloid-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiko Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Howard C-H Shen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Komi
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinju Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yuri Tomabechi
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Kenji Okamoto
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Susumu Uchiyama
- Research Department, U-Medico Inc., Suita, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Megumi Inaba
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
44
|
Carey JL, Guo L. Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Front Mol Biosci 2022; 9:826719. [PMID: 35187086 PMCID: PMC8847598 DOI: 10.3389/fmolb.2022.826719] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation of RNA-binding proteins mediates the formation of numerous membraneless organelles with essential cellular function. However, aberrant phase transition of these proteins leads to the formation of insoluble protein aggregates, which are pathological hallmarks of neurodegenerative diseases including ALS and FTD. TDP-43 and FUS are two such RNA-binding proteins that mislocalize and aggregate in patients of ALS and FTD. They have similar domain structures that provide multivalent interactions driving their phase separation in vitro and in the cellular environment. In this article, we review the factors that mediate and regulate phase separation of TDP-43 and FUS. We also review evidences that connect the phase separation property of TDP-43 and FUS to their functional roles in cells. Aberrant phase transition of TDP-43 and FUS leads to protein aggregation and disrupts their regular cell function. Therefore, restoration of functional protein phase of TDP-43 and FUS could be beneficial for neuronal cells. We discuss possible mechanisms for TDP-43 and FUS aberrant phase transition and aggregation while reviewing the methods that are currently being explored as potential therapeutic strategies to mitigate aberrant phase transition and aggregation of TDP-43 and FUS.
Collapse
Affiliation(s)
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
45
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
46
|
Differential roles for DNAJ isoforms in HTT-polyQ and FUS aggregation modulation revealed by chaperone screens. Nat Commun 2022; 13:516. [PMID: 35082301 PMCID: PMC8792056 DOI: 10.1038/s41467-022-27982-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation is a hallmark of neurodegeneration. Here, we find that Huntington's disease-related HTT-polyQ aggregation induces a cellular proteotoxic stress response, while ALS-related mutant FUS (mutFUS) aggregation leads to deteriorated proteostasis. Further exploring chaperone function as potential modifiers of pathological aggregation in these contexts, we reveal divergent effects of naturally-occurring chaperone isoforms on different aggregate types. We identify a complex of the full-length (FL) DNAJB14 and DNAJB12, that substantially protects from mutFUS aggregation, in an HSP70-dependent manner. Their naturally-occurring short isoforms, however, do not form a complex, and lose their ability to preclude mutFUS aggregation. In contrast, DNAJB12-short alleviates, while DNAJB12-FL aggravates, HTT-polyQ aggregation. DNAJB14-FL expression increases the mobility of mutFUS aggregates, and restores the deteriorated proteostasis in mutFUS aggregate-containing cells and primary neurons. Our results highlight a maladaptive cellular response to pathological aggregation, and reveal a layer of chaperone network complexity conferred by DNAJ isoforms, in regulation of different aggregate types.
Collapse
|
47
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
48
|
Amyloid Fragmentation and Disaggregation in Yeast and Animals. Biomolecules 2021; 11:biom11121884. [PMID: 34944528 PMCID: PMC8699242 DOI: 10.3390/biom11121884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Amyloids are filamentous protein aggregates that are associated with a number of incurable diseases, termed amyloidoses. Amyloids can also manifest as infectious or heritable particles, known as prions. While just one prion is known in humans and animals, more than ten prion amyloids have been discovered in fungi. The propagation of fungal prion amyloids requires the chaperone Hsp104, though in excess it can eliminate some prions. Even though Hsp104 acts to disassemble prion fibrils, at normal levels it fragments them into multiple smaller pieces, which ensures prion propagation and accelerates prion conversion. Animals lack Hsp104, but disaggregation is performed by the same complement of chaperones that assist Hsp104 in yeast—Hsp40, Hsp70, and Hsp110. Exogenous Hsp104 can efficiently cooperate with these chaperones in animals and promotes disaggregation, especially of large amyloid aggregates, which indicates its potential as a treatment for amyloid diseases. However, despite the significant effects, Hsp104 and its potentiated variants may be insufficient to fully dissolve amyloid. In this review, we consider chaperone mechanisms acting to disassemble heritable protein aggregates in yeast and animals, and their potential use in the therapy of human amyloid diseases.
Collapse
|
49
|
Potentiation of the activity of Escherichia coli chaperone DnaJ by tailing hyper-acidic minipeptides. J Biotechnol 2021; 341:86-95. [PMID: 34563565 DOI: 10.1016/j.jbiotec.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
The chaperone network plays an essential role in cellular protein homeostasis. However, some core components often coaggregate with misfolded proteins for sequestration and dysfunction, leading to abnormal cell proteostasis, aggregation-associated disorders, and poor solubility of overexpressed recombinant proteins. Among them, DnaJ or its ortholog, an obligate co-chaperone in the tripartite DnaK-DnaJ-GrpE system, is of more implications, probably due to its intrinsic propensity for aggregation. Herein, we potentiated the activity of Escherichia coli DnaJ by using hyper-acidified protein fusion strategy. We found DnaJ did possess only a moderate solubility that could be remarkably improved by fusing hyper-acidic minipeptides. Most importantly, we revealed the hyper-acidified DnaJ with a fusion tail could outperform its native form (significantly up to 2.1-fold) to enhance the solubility of target proteins and meanwhile appropriately impart them an elevated activity. These results suggest the hyper-acidified DnaJs can chaperone target proteins with correct folding into a truly soluble and active form. Moreover, we showed these hyper-acidified DnaJ variants could surpass its prototype to confer E. coli or yeast an enhanced heat tolerance, and DnaJ itself could be solubilized by its hyper-acidified fusion cognates. Finally, we discussed the overall mechanism for DnaJ activity potentiation mediated by hyper-acidic tailing fusion.
Collapse
|
50
|
Wayne NJ, Dembny KE, Pease T, Saba F, Zhao X, Masison DC, Greene LE. Huntingtin Polyglutamine Fragments Are a Substrate for Hsp104 in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0012221. [PMID: 34424055 PMCID: PMC8547424 DOI: 10.1128/mcb.00122-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.
Collapse
Affiliation(s)
- Nicole J. Wayne
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E. Dembny
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler Pease
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Farrin Saba
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|