1
|
Bleymehl K, Pérez-Gómez A, Omura M, Moreno-Pérez A, Macías D, Bai Z, Johnson RS, Leinders-Zufall T, Zufall F, Mombaerts P. A Sensor for Low Environmental Oxygen in the Mouse Main Olfactory Epithelium. Neuron 2016; 92:1196-1203. [PMID: 27916458 PMCID: PMC5196021 DOI: 10.1016/j.neuron.2016.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 11/24/2022]
Abstract
Sensing the level of oxygen in the external and internal environments is essential for survival. Organisms have evolved multiple mechanisms to sense oxygen. No function in oxygen sensing has been attributed to any mammalian olfactory system. Here, we demonstrate that low environmental oxygen directly activates a subpopulation of sensory neurons in the mouse main olfactory epithelium. These neurons express the soluble guanylate cyclase Gucy1b2 and the cation channel Trpc2. Low oxygen induces calcium influx in these neurons, and Gucy1b2 and Trpc2 are required for these responses. In vivo exposure of a mouse to low environmental oxygen causes Gucy1b2-dependent activation of olfactory bulb neurons in the vicinity of the glomeruli formed by axons of Gucy1b2+ sensory neurons. Low environmental oxygen also induces conditioned place aversion, for which Gucy1b2 and Trpc2 are required. We propose that this chemosensory function enables a mouse to rapidly assess the oxygen level in the external environment.
Collapse
Affiliation(s)
- Katherin Bleymehl
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Anabel Pérez-Gómez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Masayo Omura
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Ana Moreno-Pérez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - David Macías
- Department of Physiology, Development & Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, UK
| | - Zhaodai Bai
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Randall S Johnson
- Department of Physiology, Development & Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
| |
Collapse
|