1
|
Bao Z, Wang Y, Wang R, Dong F, Li T, Chan WY, Chen ZJ, Lu G, Liu H, Chen X. Pathogenic TDRD12 variants cause defective piRNA pathway and male infertility in humans and mice. J Genet Genomics 2024; 51:1322-1326. [PMID: 38960314 DOI: 10.1016/j.jgg.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Ziyou Bao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Renxue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Fan Dong
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China
| | - Tongtong Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China.
| | - Hongbin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiangfeng Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China.
| |
Collapse
|
2
|
Kristjansson D, Lee Y, Page CM, Gjessing H, Magnus MC, Jugessur A, Lyle R, Håberg SE. Sex differences in DNA methylation variations according to ART conception-evidence from the Norwegian mother, father, and child cohort study. Sci Rep 2024; 14:22904. [PMID: 39358554 PMCID: PMC11447267 DOI: 10.1038/s41598-024-73845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Previous studies have shown cord-blood DNA methylation differences in newborns conceived using assisted reproductive technologies (ART) compared to those conceived naturally. However, whether these ART-related DNA methylation differences vary with children's sex is unknown. We hypothesize that the DNA methylation differences in cord blood between ART-conceived and naturally conceived newborns also varies by the sex of the child, with distinct patterns of differential methylation present in males and females. We investigated sex differences in cord-blood DNA methylation variation according to conception by ART using the Illumina MethylationEPIC platform, comparing 456 ART-conceived versus 507 naturally-conceived girls, and 503 ART-conceived and 473 naturally-conceived boys. We identified 37 differentially methylated CpGs according to ART-conception among girls, and 70 differentially methylated CpGs according to ART-conception among boys, when we used a 1% false discovery rate to account for multiple testing. Ten CpGs were differentially methylated according to conception by ART in both sexes. Among the genes that were associated with these CpGs, we found the BRCA1; NBR2 gene (two CpGs) was hypermethylated in girls while the APC2 (two CpGs) and NECAB3;ACTL10, (four CpGs) related to cellular signaling were hypomethylated in boys. These findings confirm the presence of sex-specific epigenetic differences, illustrating the nuanced impact of ART on the fetal epigenome. There is a need for further explorations into the implications for sex-specific developmental trajectories and health outcomes in ART-conceived children.
Collapse
Affiliation(s)
- Dana Kristjansson
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway.
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Yunsung Lee
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Christian M Page
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon Gjessing
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Maria C Magnus
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Astanand Jugessur
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Siri E Håberg
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Wang Y, Chen J, Huang X, Wu B, Dai P, Zhang F, Li J, Wang L. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1035-1050. [PMID: 38332217 DOI: 10.1007/s11427-023-2408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 02/10/2024]
Abstract
Cytosine base editing achieves C•G-to-T•A substitutions and can convert four codons (CAA/CAG/CGA/TGG) into STOP-codons (induction of STOP-codons, iSTOP) to knock out genes with reduced mosaicism. iSTOP enables direct phenotyping in founders' somatic cells, but it remains unknown whether this works in founders' germ cells so as to rapidly reveal novel genes for fertility. Here, we initially establish that iSTOP in mouse zygotes enables functional characterization of known genes in founders' germ cells: Cfap43-iSTOP male founders manifest expected sperm features resembling human "multiple morphological abnormalities of the flagella" syndrome (i.e., MMAF-like features), while oocytes of Zp3-iSTOP female founders have no zona pellucida. We further illustrate iSTOP's utility for dissecting the functions of unknown genes with Ccdc183, observing MMAF-like features and male infertility in Ccdc183-iSTOP founders, phenotypes concordant with those of Ccdc183-KO offspring. We ultimately establish that CCDC183 is essential for sperm morphogenesis through regulating the assembly of outer dynein arms and participating in the intra-flagellar transport. Our study demonstrates iSTOP as an efficient tool for direct reproductive disease modeling and phenotyping in germ cells of the founder generation, and rapidly reveals the essentiality of Ccdc183 in fertility, thus providing a time-saving approach for validating genetic defects (like nonsense mutations) for human infertility.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingwen Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bangguo Wu
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingbo Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
5
|
Wang X, Gou LT, Liu MF. Noncanonical Functions of PIWIL1/piRNAs in animal male germ cells and human diseases. Biol Reprod 2022; 107:101-108. [PMID: 35403682 DOI: 10.1093/biolre/ioac073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) are specifically expressed in animal germlines and play essential roles during gametogenesis in animals. The primary function of PIWI/piRNAs is known to silence transposable elements for protecting genome integrity in animal germlines, while their roles beyond silencing transposons are also documented by us and others. In particular, we show that mouse PIWIL1 (MIWI)/piRNAs play a dual role in regulating protein-coding genes in mouse spermatids through interacting with different protein factors in a developmental stage-dependent manner, including translationally activating a subset of ARE-containing mRNAs in round spermatids and inducing massive mRNA degradation in late spermatids. We further show that MIWI is eliminated through the ubiquitin-26S proteasome pathway during late spermiogenesis. By exploring the biological function of MIWI ubiquitination by APC/C, we identified ubiquitination-deficient mutations in human PIWIL1 of infertile men and further established their causative role in male infertility in mouse model, supporting PIWIL1 as a human male infertility-relevant gene. Additionally, we reported that PIWIL1, aberrantly induced in human tumors, functions as an oncoprotein in a piRNA-independent manner in cancer cells. In the current review, we summarize our latest findings regarding the roles and mechanisms of PIWIL1 and piRNAs in mouse spermatids and human diseases, and discuss the related works in the field.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
6
|
Saritas G, Main AM, Winge SB, Mørup N, Almstrup K. PIWI-interacting RNAs and human testicular function. WIREs Mech Dis 2022; 14:e1572. [PMID: 35852002 PMCID: PMC9788060 DOI: 10.1002/wsbm.1572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
Small noncoding RNAs (sncRNAs) are pieces of RNA with a length below 200 bp and represent a diverse group of RNAs having many different biological functions. The best described subtype is the microRNAs which primarily function in posttranscriptional gene regulation and appear essential for most physiological processes. Of particular interest for the germline is the PIWI-interacting RNAs (piRNAs) which are a class of sncRNA of 21-35 bp in length that are almost exclusively found in germ cells. Recently, it has become clear that piRNAs are essential for testicular function, and in this perspective, we outline the current knowledge of piRNAs in humans. Although piRNAs appear unique to germ cells, they have also been described in various somatic cancers and biofluids. Here, we discuss the potential function of piRNAs in somatic tissues and whether detection in biofluids may be used as a biomarker for testicular function. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gülizar Saritas
- The Department of Growth and ReproductionCopenhagen University HospitalCopenhagenDenmark,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)CopenhagenDenmark
| | - Ailsa Maria Main
- The Department of Growth and ReproductionCopenhagen University HospitalCopenhagenDenmark,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)CopenhagenDenmark
| | - Sofia Boeg Winge
- The Department of Growth and ReproductionCopenhagen University HospitalCopenhagenDenmark,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)CopenhagenDenmark
| | - Nina Mørup
- The Department of Growth and ReproductionCopenhagen University HospitalCopenhagenDenmark,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)CopenhagenDenmark
| | - Kristian Almstrup
- The Department of Growth and ReproductionCopenhagen University HospitalCopenhagenDenmark,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)CopenhagenDenmark,The Department of Cellular and Molecular MedicineFaculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|