1
|
Gachie SW, Muhire A, Li D, Kawamoto A, Takeda-Kamiya N, Goto Y, Sato M, Toyooka K, Yoshimura R, Takami T, Zhang L, Kurisu G, Terachi T, Sakamoto W. The thylakoid membrane remodeling protein VIPP1 forms bundled oligomers in tobacco chloroplasts. PLANT PHYSIOLOGY 2025; 198:kiaf137. [PMID: 40329872 PMCID: PMC12043068 DOI: 10.1093/plphys/kiaf137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2 MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo.
Collapse
Affiliation(s)
- Sarah W Gachie
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Alexandre Muhire
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Di Li
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriko Takeda-Kamiya
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yumi Goto
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Yoshimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Lingang Zhang
- School of Life Sciences, Inner Mongolia University/Key Laboratory of Herbage and Endemic Crop Biotechnology, Hohhot 010070, China
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Terachi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
2
|
Nachmias D, Frohn BP, Sachse C, Mizrahi I, Elia N. ESCRTs - a multi-purpose membrane remodeling device encoded in all life forms. Trends Microbiol 2025:S0966-842X(25)00008-3. [PMID: 39979199 DOI: 10.1016/j.tim.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The ESCRT (endosomal sorting complexes required for transport) membrane remodeling complex, found across all life forms, exhibits a versatility that transcends evolutionary boundaries. From orchestrating the constriction of micron-wide tubes in cell division to facilitating the budding of 50 nm vesicles in receptor degradation, ESCRTs perform diverse functions in animal cells. However, the basis of this functional diversity remains enigmatic. While extensively studied in eukaryotes, the role of ESCRTs in prokaryotes is only beginning to emerge. This review synthesizes data on ESCRT systems across the tree of life, focusing on microorganisms and drawing parallels to their functions in human cells. This comparative approach highlights the remarkable plasticity of the ESCRT system across functional, structural, and genomic levels in both prokaryotes and eukaryotes. This integrated knowledge supports a model in which the ESCRT system evolved as a multipurpose membrane remodeling tool, adaptable to specific functions within and across organisms. Our review not only underscores the significance of ESCRTs in microorganisms but also paves the way for exciting avenues of research into the intricacies of cellular membrane dynamics, offering valuable insights into the evolution of cellular complexity across diverse organisms and ecosystems.
Collapse
Affiliation(s)
- Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Béla P Frohn
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Dusseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
3
|
Schlösser L, Sachse C, Low HH, Schneider D. Conserved structures of ESCRT-III superfamily members across domains of life. Trends Biochem Sci 2023; 48:993-1004. [PMID: 37718229 DOI: 10.1016/j.tibs.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Structural and evolutionary studies of cyanobacterial phage shock protein A (PspA) and inner membrane-associated protein of 30 kDa (IM30) have revealed that these proteins belong to the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, which is conserved across all three domains of life. PspA and IM30 share secondary and tertiary structures with eukaryotic ESCRT-III proteins, whilst also oligomerizing via conserved interactions. Here, we examine the structures of bacterial ESCRT-III-like proteins and compare the monomeric and oligomerized forms with their eukaryotic counterparts. We discuss conserved interactions used for self-assembly and highlight key hinge regions that mediate oligomer ultrastructure versatility. Finally, we address the differences in nomenclature assigned to equivalent structural motifs in both the bacterial and eukaryotic fields and suggest a common nomenclature applicable across the ESCRT-III superfamily.
Collapse
Affiliation(s)
- Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute for Biological Information Processing/IBI-6 Cellular Structural Biology, Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Di Giulio M. The phylogenetic distribution of the cell division system would not imply a cellular LUCA but a progenotic LUCA. Biosystems 2021; 210:104563. [PMID: 34653531 DOI: 10.1016/j.biosystems.2021.104563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
The stage reached by the evolution of cellularity in the Last Universal Common Ancestor (LUCA) has not yet been identified. In actual fact, it has not been clarified whether the LUCA was a cell (genote) or a protocell (progenote). Recently, Pende et al. (2021) analysed the phylogenetic distribution of the cell division system present in bacteria and archaea reaching the conclusion that LUCA was a cell and not a progenote. I find this conclusion unreasonable with respect to the observations they presented. One of the points is that the presence in the domains of life of many genes - some paralogs - which would define the membrane-remodeling superfamily would seem to imply a tempo and a mode of evolution for the LUCA more typical of the progenote than the genote. Indeed, the simultaneous presence of different genes - in a given evolutionary stage and with functions that are also partially correlated - would seem to define a heterogeneity that would appear to be the expression of a rapid and progressive evolution precisely because this evolution would have taken place in the diversification of all these genes. Furthermore, the presence of different genes coding for the function of cell division and related functions could reflect a progenotic status in LUCA, precisely because these functions might have originated from a single ancestral gene instead coding for a protein (or proteins) with multiple functions, and therefore an expression of a rapid and progressive evolution typical of the progenote. I also criticize other aspects of considerations made by Pende at al. (2021). The arguments presented here together with those existing in the literature make the hypothesis of a cellular LUCA favoured by Pende et al. (2021) unlikely.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena (L'Aquila), Italy.
| |
Collapse
|