1
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
Xu N, Wu K, La T, Cao B. Isolation and whole genomic analysis of mesophilic bacterium Pseudoglutamicibacter cumminsii in epithelial mesothelioma. Heliyon 2024; 10:e35617. [PMID: 39170262 PMCID: PMC11336841 DOI: 10.1016/j.heliyon.2024.e35617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The relationship between bacteria and tumors has been the hot spot of clinical research in recent years. Pseudoglutamicibacter cumminsii is an aerobic Gram-positive bacterium commonly found in soil. Recent studies have identified P. cumminsii in patients with cutaneous and urinary tract infections. However, little is known on its pathogenesis as well as involvement in other clinical symptoms. In this study, we first report the isolation of P. cumminsii in blood of an epithelial mesothelioma patient. The clinical and laboratory characteristics of P. cumminsii were first described and evaluated. The pure colony of P. cumminsii was then identified using automated microorganism identification system and mass spectrum. The whole genome of the newly identified strain was sequenced with third generation sequencing (TGS). The assembled genome was further annotated and analyzed. Whole genomic and comparative genomic analysis revealed that the isolated P. cumminsii strain in this study had a genome size of 2,179,930 bp and had considerable unique genes compared with strains reported in previous findings. Further phylogenetic analysis showed that this strain had divergent phylogenetic relationship with other P. cumminsii strains. Based on these results, the newly found P. cumminsii strain was named P. cumminsii XJ001 (PC1). Virulence analysis identified a total of 71 pathogenic genes with potential roles in adherence, immune modulation, nutrition/metabolism, and regulation in PC1. Functional analysis demonstrated that the annotated genes in PC1 were mainly clustered into amino acid metabolism (168 genes), carbohydrate metabolism (107 genes), cofactor and vitamin metabolisms (98 genes), and energy metabolism (68 genes). Specifically, six genes including yodJ, idh, katA, pyk, sodA, and glsA were identified within cancer pathways, and their corresponding homologous genes have been documented with precise roles in human cancer. Collectively, the above results first identified P. cumminsii in the blood of tumor patients and further provide whole genomic landscape of the newly identified PC1 strain, shedding light on future studies of bacteria in tumorigenesis.
Collapse
Affiliation(s)
- Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Cao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| |
Collapse
|
3
|
Laborda-Illanes A, Aranega-Martín L, Sánchez-Alcoholado L, Boutriq S, Plaza-Andrades I, Peralta-Linero J, Garrido Ruiz G, Pajares-Hachero B, Álvarez M, Alba E, González-González A, Queipo-Ortuño MI. Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis. Int J Mol Sci 2024; 25:7091. [PMID: 39000198 PMCID: PMC11241717 DOI: 10.3390/ijms25137091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer (BC) continues to pose a significant burden on global cancer-related morbidity and mortality, primarily driven by metastasis. However, the combined influence of microRNAs (miRNAs) and intratumoral microbiota on BC metastasis remains largely unexplored. In this study, we aimed to elucidate the interplay between intratumoral microbiota composition, miRNA expression profiles, and their collective influence on metastasis development in BC patients by employing 16S rRNA sequencing and qPCR methodologies. Our findings revealed an increase in the expression of miR-149-5p, miR-20b-5p, and miR-342-5p in metastatic breast cancer (Met-BC) patients. The Met-BC patients exhibited heightened microbial richness and diversity, primarily attributed to diverse pathogenic bacteria. Taxonomic analysis identified several pathogenic and pro-inflammatory species enriched in Met-BC, contrasting with non-metastatic breast cancer (NonMet-BC) patients, which displayed an enrichment in potential probiotic and anti-inflammatory species. Notably, we identified and verified a baseline prognostic signature for metastasis in BC patients, with its clinical relevance further validated by its impact on overall survival. In conclusion, the observed disparities in miRNA expression and species-level bacterial abundance suggest their involvement in BC progression. The development of a prognostic signature holds promise for metastasis risk assessment, paving the way for personalized interventions and improved clinical outcomes in BC patients.
Collapse
Affiliation(s)
- Aurora Laborda-Illanes
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Faculty of Medicine, University of Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lucía Aranega-Martín
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Faculty of Medicine, University of Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lidia Sánchez-Alcoholado
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Faculty of Medicine, University of Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Soukaina Boutriq
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | - Isaac Plaza-Andrades
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | - Jesús Peralta-Linero
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | | | - Bella Pajares-Hachero
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | - Martina Álvarez
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Education, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - Emilio Alba
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Department of Medicine, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - Alicia González-González
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- UGC Endocrinology and Nutrition, Regional University Hospital of Málaga, Institute of Biomedical Research of Málaga (IBIMA), Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
4
|
Zheng H, Chen X, Li Q, Liu Y, Cai J. Effects of chemotherapy and immunotherapy on microbial diversity in TME and engineered bacterial-mediated tumor therapy. Front Immunol 2023; 14:1084926. [PMID: 36817477 PMCID: PMC9932492 DOI: 10.3389/fimmu.2023.1084926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microbiota is a group of microorganisms located in tumor tissues with rich diversity that can promote tumorigenesis and development, and different types of tumors have different tumor microbiotas, which has important implications for tumor research, detection, and clinical treatment. In this review, we examine the diversity of the tumor microbiota, discuss the impact of chemotherapy and immunotherapy on tumor microbiota diversity, and summarize recent advances in the use of genetically engineered bacteria for the treatment of tumors. In addition, we propose key questions that need to be further addressed by the tumor microbiota.
Collapse
Affiliation(s)
- Heng Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.,School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Xianxian Chen
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qiyang Li
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuqi Liu
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinzhong Cai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.,Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
5
|
Tao J, Zhu L, Yakoub M, Reißfelder C, Loges S, Schölch S. Cell-Cell Interactions Drive Metastasis of Circulating Tumor Microemboli. Cancer Res 2022; 82:2661-2671. [PMID: 35856896 DOI: 10.1158/0008-5472.can-22-0906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Circulating tumor cells are the cellular mediators of distant metastasis in solid malignancies. Their metastatic potential can be augmented by clustering with other tumor cells or nonmalignant cells, forming circulating tumor microemboli (CTM). Cell-cell interactions are key regulators within CTM that convey enhanced metastatic properties, including improved cell survival, immune evasion, and effective extravasation into distant organs. However, the cellular and molecular mechanism of CTM formation, as well as the biology of interactions between tumor cells and immune cells, platelets, and stromal cells in the circulation, remains to be determined. Here, we review the current literature on cell-cell interactions in homotypic and heterotypic CTM and provide perspectives on therapeutic strategies to attenuate CTM-mediated metastasis by targeting cell-cell interactions.
Collapse
Affiliation(s)
- Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Yakoub
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|