1
|
Zouein A, Lende-Dorn B, Galloway KE, Ellis T, Ceroni F. Engineered transcription factor-binding arrays for DNA-based gene expression control in mammalian cells. Trends Biotechnol 2025:S0167-7799(25)00172-6. [PMID: 40494709 DOI: 10.1016/j.tibtech.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 06/18/2025]
Abstract
Tools that manipulate gene expression in mammalian cells without any additional expression are critical for cell engineering applications. Here, we demonstrate the use of arrays of transcription factor (TF) recognition elements (REs) as DNA tools for controlling gene expression. We first demonstrate that TetR-based RE arrays can alter synthetic gene circuit performance. We then open the approach to any TF with a known binding site by developing a new technique called Cloning Troublesome Repeats in Loops (CTRL), which can assemble plasmids with up to 256 RE repeats. Transfection of custom RE array plasmids assembled by CTRL into mammalian cells modifies host cell gene regulation by sequestration of TFs of interest and can sequester both synthetic and native TFs, offering applications in the control of gene circuits and for directing cell fate. This work advances our ability to assemble repetitive DNA arrays and shows how TF-binding RE arrays expand possibilities in mammalian cell engineering.
Collapse
Affiliation(s)
- Annalise Zouein
- Department of Chemical Engineering, Imperial College London, London, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Brittany Lende-Dorn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
2
|
Rottenberg JT, Taslim TH, Soto-Ugaldi LF, Martinez-Cuesta L, Martinez-Calejman C, Fuxman Bass JI. Viral cis-regulatory elements as sensors of cellular states and environmental cues. Trends Genet 2024; 40:772-783. [PMID: 38821843 PMCID: PMC11387143 DOI: 10.1016/j.tig.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
To withstand a hostile cellular environment and replicate, viruses must sense, interpret, and respond to many internal and external cues. Retroviruses and DNA viruses can intercept these cues impinging on host transcription factors via cis-regulatory elements (CREs) in viral genomes, allowing them to sense and coordinate context-specific responses to varied signals. Here, we explore the characteristics of viral CREs, the classes of signals and host transcription factors that regulate them, and how this informs outcomes of viral replication, immune evasion, and latency. We propose that viral CREs constitute central hubs for signal integration from multiple pathways and that sequence variation between viral isolates can rapidly rewire sensing mechanisms, contributing to the variability observed in patient outcomes.
Collapse
Affiliation(s)
| | - Tommy H Taslim
- Department of Biology, Boston University, Boston, MA, USA; Molecular and Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Lucia Martinez-Cuesta
- Department of Biology, Boston University, Boston, MA, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Juan I Fuxman Bass
- Department of Biology, Boston University, Boston, MA, USA; Molecular and Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Wan Y, Mu Q, Krzysztoń R, Cohen J, Coraci D, Helenek C, Tompkins C, Lin A, Farquhar K, Cross E, Wang J, Balázsi G. Adaptive DNA amplification of synthetic gene circuit opens a way to overcome cancer chemoresistance. Proc Natl Acad Sci U S A 2023; 120:e2303114120. [PMID: 38019857 DOI: 10.1073/pnas.2303114120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Drug resistance continues to impede the success of cancer treatments, creating a need for experimental model systems that are broad, yet simple, to allow the identification of mechanisms and novel countermeasures applicable to many cancer types. To address these needs, we investigated a set of engineered mammalian cell lines with synthetic gene circuits integrated into their genome that evolved resistance to Puromycin. We identified DNA amplification as the mechanism underlying drug resistance in 4 out of 6 replicate populations. Triplex-forming oligonucleotide (TFO) treatment combined with Puromycin could efficiently suppress the growth of cell populations with DNA amplification. Similar observations in human cancer cell lines suggest that TFOs could be broadly applicable to mitigate drug resistance, one of the major difficulties in treating cancer.
Collapse
Affiliation(s)
- Yiming Wan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region 999077, China
| | - Rafał Krzysztoń
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Joseph Cohen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Damiano Coraci
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Christopher Helenek
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | | | - Annie Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Kevin Farquhar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | | | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region 999077, China
| | - Gábor Balázsi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
4
|
Li S, Liu Q, Wang E, Wang J. Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone. iScience 2023; 26:107885. [PMID: 37766979 PMCID: PMC10520453 DOI: 10.1016/j.isci.2023.107885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-cycle arrest and polarized growth are commonly used to characterize the response of yeast to pheromone. However, the quantitative decision-making processes underlying time-dependent changes in cell fate remain unclear. In this study, we conducted single-cell level experiments to observe multidimensional responses, uncovering diverse fates of yeast cells. Multiple states are revealed, along with the kinetic switching rates and pathways among them, giving rise to a quantitative landscape of mating response. To quantify the experimentally observed cell fates, we developed a theoretical framework based on non-equilibrium landscape and flux theory. Additionally, we performed stochastic simulations of biochemical reactions to elucidate signal transduction and cell growth. Notably, our experimental findings have provided the first global quantitative evidence of the real-time synchronization between intracellular signaling, physiological growth, and morphological functions. These results validate the proposed underlying mechanism governing the emergence of multiple cell fate states. This study introduces an emerging mechanistic approach to understand non-equilibrium cell fate decision-making in response to pheromone.
Collapse
Affiliation(s)
- Sheng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
5
|
Fang C, Xiao G, Wang T, Song L, Peng B, Xu B, Zhang K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. RESEARCH 2023; 6:0108. [PMID: 37040283 PMCID: PMC10079287 DOI: 10.34133/research.0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Oncolytic viruses (OVs) as one promising antitumor methods have made important contributions to tumor immunotherapy, which arouse increasing attention. They provide the dual mechanisms including direct killing effect toward tumor cells and immune activation for elevating antitumor responses, which have been proved in many preclinical studies. Especially, natural or genetically modified viruses as clinical immune preparations have emerged as a new promising approach objective to oncology treatment. The approval of talimogene laherparepvec (T-VEC) by the U.S. Food and Drug Administration (FDA) for the therapy of advanced melanoma could be considered as a milestone achievement in the clinical translation of OV. In this review, we first discussed the antitumor mechanisms of OVs with an emphasis on targeting, replication, and propagation. We further outlined the state of the art of current OVs in tumor and underlined the activated biological effects especially including immunity. More significantly, the enhanced immune responses based on OVs were systematically discussed from different perspectives such as combination with immunotherapy, genetic engineering of OVs, integration with nanobiotechnology or nanoparticles, and antiviral response counteraction, where their principles were shed light on. The development of OVs in the clinics was also highlighted to analyze the actuality and concerns of different OV applications in clinical trials. At last, the future perspectives and challenges of OVs as an already widely accepted treatment means were discussed. This review will provide a systematic review and deep insight into OV development and also offer new opportunities and guidance pathways to drive the further clinical translation.
Collapse
Affiliation(s)
- Chao Fang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Gaozhe Xiao
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| | - Taixia Wang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Li Song
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bo Peng
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Huangpu, Shanghai 200011, China
| | - Kun Zhang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| |
Collapse
|
6
|
Affiliation(s)
- Nikolai P Jaschke
- Division of Endocrinology, Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Cis-regulatory decoy disrupts autorepression: a potential escape-resistant anti-viral therapy. Signal Transduct Target Ther 2022; 7:338. [PMID: 36167795 PMCID: PMC9513292 DOI: 10.1038/s41392-022-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022] Open
|
8
|
Balázsi G. New antivirals exploit viral feedback tricks for a cure without resistance. Cell 2022; 185:2210-2212. [DOI: 10.1016/j.cell.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
|