1
|
Chen H, Xu S. Population genomics advances in frontier ethnic minorities in China. SCIENCE CHINA. LIFE SCIENCES 2025; 68:961-973. [PMID: 39643831 DOI: 10.1007/s11427-024-2659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024]
Abstract
China, with its large geographic span, possesses rich genetic diversity across vast frontier regions in addition to the Han Chinese majority. Importantly, demographic events and various natural and cultural environments in Chinese frontier regions have shaped the genomic diversity of ethnic minorities via local adaptations. Thus, insights into the genetic diversity and adaptive evolution of these under-represented ethnic groups are crucial for understanding evolutionary scenarios and biomedical implications in East Asian populations. Here, we focus on ethnic minorities in Chinese frontier regions and review research advances regarding genomic diversity, genetic structure, population history, genetic admixture, and local adaptation. We first provide an overview of the extensive genetic diversity across populations in different Chinese frontier regions. Next, we summarize research progress regarding genetic ancestry, demographic history, the adaptive process, and the archaic identification of multiple ethnic minorities in different Chinese frontier regions. Finally, we discuss the gaps and opportunities in genomic studies of Chinese populations and the need for a more comprehensive understanding of genomic diversity and the evolution of populations of East Asian ancestry in the post-genomic era.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Zeng Y, He K, Chen X, Bai W, Lin H, Chen J, Nedyalkov N, Yamaguchi N, Vijayan K, Suganthasakthivel R, Kumar B, Han Y, Chen Z, Wang W, Liu Y. Museum specimens shedding light on the evolutionary history and cryptic diversity of the hedgehog family Erinaceidae. Integr Zool 2024. [PMID: 39370584 DOI: 10.1111/1749-4877.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The family Erinaceidae encompasses 27 extant species in two subfamilies: Erinaceinae, which includes spiny hedgehogs, and Galericinae, which comprises silky-furred gymnures and moonrats. Although they are commonly recognized by the general public, their phylogenetic history remains incompletely understood, and several species have never been included in any molecular analyses. Additionally, previous research suggested that the species diversity of Erinaceidae might be underestimated. In this study, we sequenced the mitochondrial genomes of 29 individuals representing 18 erinaceid species using 18 freshly collected tissue and 11 historical museum specimens. We also integrated previously published data for a concatenated analysis. We aimed to elucidate the evolutionary relationships within Erinaceidae, estimate divergence times, and uncover potential underestimated species diversity. Our data finely resolved intergeneric and interspecific relationships and presented the first molecular evidence for the phylogenetic position of Mesechinus wangi, Paraechinus micropus, and P. nudiventris. Our results revealed a sister relationship between Neotetracus and Neohylomys gymnures, as well as a sister relationship between Hemiechinus and Mesechinus, supporting previous hypotheses. Additionally, our findings provided a novel phylogenetic position for Paraechinus aethiopicus, placing it in a basal position within the genus. Furthermore, our study uncovered cryptic species diversity within Hylomys suillus as well as in Neotetracus sinensis, Atelerix albiventris, P. aethiopicus, and Hemiechinus auratus, most of which have been previously overlooked.
Collapse
Affiliation(s)
- Ying Zeng
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xing Chen
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Weipeng Bai
- Institute of Nihewan Archaeology, College of History and Culture, Hebei Normal University, Shijiazhuang, China
| | - Hongzhou Lin
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nedko Nedyalkov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nobuyuki Yamaguchi
- Department of Biological and Environmental Sciences, Faculty of Arts and Sciences, Qatar University, Doha, Qatar
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Keerthy Vijayan
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, India
| | | | - Brawin Kumar
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh, India
- Hedgehog Conservation Alliance (HCA), Kanyakumari, Tamil Nadu, India
| | - Yuqing Han
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Zhongzheng Chen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Wildlife Forensic Science Service, Kunming, China
| | - Wenzhi Wang
- Wildlife Forensic Science Service, Kunming, China
- Guizhou Jiandee Laboratories Co., Ltd., Guiyang, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Housman G. Advances in skeletal genomics research across tissues and cells. Curr Opin Genet Dev 2024; 88:102245. [PMID: 39180931 DOI: 10.1016/j.gde.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from in vivo skeletal tissues, as well as the development of relevant in vitro skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.
Collapse
Affiliation(s)
- Genevieve Housman
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Emery MV, Bolhofner K, Spake L, Ghafoor S, Versoza CJ, Rawls EM, Winingear S, Buikstra JE, Loreille O, Fulginiti LC, Stone AC. Targeted enrichment of whole-genome SNPs from highly burned skeletal remains. J Forensic Sci 2024; 69:1558-1577. [PMID: 38415845 DOI: 10.1111/1556-4029.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Genetic assessment of highly incinerated and/or degraded human skeletal material is a persistent challenge in forensic DNA analysis, including identifying victims of mass disasters. Few studies have investigated the impact of thermal degradation on whole-genome single-nucleotide polymorphism (SNP) quality and quantity using next-generation sequencing (NGS). We present whole-genome SNP data obtained from the bones and teeth of 27 fire victims using two DNA extraction techniques. Extracts were converted to double-stranded DNA libraries then enriched for whole-genome SNPs using unpublished biotinylated RNA baits and sequenced on an Illumina NextSeq 550 platform. Raw reads were processed using the EAGER (Efficient Ancient Genome Reconstruction) pipeline, and the SNPs filtered and called using FreeBayes and GATK (v. 3.8). Mixed-effects modeling of the data suggest that SNP variability and preservation is predominantly determined by skeletal element and burn category, and not by extraction type. Whole-genome SNP data suggest that selecting long bones, hand and foot bones, and teeth subjected to temperatures <350°C are the most likely sources for higher genomic DNA yields. Furthermore, we observed an inverse correlation between the number of captured SNPs and the extent to which samples were burned, as well as a significant decrease in the total number of SNPs measured for samples subjected to temperatures >350°C. Our data complement previous analyses of burned human remains that compare extraction methods for downstream forensic applications and support the idea of adopting a modified Dabney extraction technique when traditional forensic methods fail to produce DNA yields sufficient for genetic identification.
Collapse
Affiliation(s)
- Matthew V Emery
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Katelyn Bolhofner
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
- School of Interdisciplinary Forensics, Arizona State University, Glendale, Arizona, USA
| | - Laure Spake
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Suhail Ghafoor
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Cyril J Versoza
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Erin M Rawls
- School of Life Sciences, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Stevie Winingear
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jane E Buikstra
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
| | - Odile Loreille
- FBI Laboratory, DNA Support Unit, Quantico, Virginia, USA
| | - Laura C Fulginiti
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Maricopa County Office of the Medical Examiner, Phoenix, Arizona, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Miao B, Liu Y, Yang R, Feng X, Liu F, Cao P, Dai Q, Ping W, Liu Y, Fu Q. Assessment of contaminants associated with gold-standard ancient DNA protocols. Sci Bull (Beijing) 2023; 68:5-9. [PMID: 36610858 DOI: 10.1016/j.scib.2022.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bo Miao
- College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Fu Q. Insights into evolutionary dynamics of East Asians through Ancient DNA. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|