1
|
Soder RP, Dawn B, Weiss ML, Dunavin N, Weir S, Mitchell J, Li M, Shune L, Singh AK, Ganguly S, Morrison M, Abdelhakim H, Godwin AK, Abhyankar S, McGuirk J. A Phase I Study to Evaluate Two Doses of Wharton's Jelly-Derived Mesenchymal Stromal Cells for the Treatment of De Novo High-Risk or Steroid-Refractory Acute Graft Versus Host Disease. Stem Cell Rev Rep 2020; 16:979-991. [PMID: 32740891 PMCID: PMC9289888 DOI: 10.1007/s12015-020-10015-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because of their well-described immunosuppressive properties, allogeneic adult human mesenchymal stromal cells (MSC) derived from bone marrow have demonstrated safety and efficacy in steroid refractory acute graft versus host disease (SR aGVHD). Clinical trials have resulted in variable success and an optimal source of MSC has yet to be defined. Based on the importance of maternal-fetal interface immune tolerance, extraembryonic fetal tissues, such as the umbilical cord, may provide an superior tissue source of MSC to mediate immunomodulation in aGVHD. METHODS A two-dose cohort trial allogeneic Wharton's Jelly-derived mesenchymal stromal cells (WJMSC, referred to as MSCTC-0010, here) were tested in 10 patients with de novo high risk (HR) or SR aGVHD post allogeneic hematopoietic stem cell transplantation (allo-HCT). Following Good Manufacturing Practices isolation, expansion and cryostorage, WJMSC were thawed and administered via intravenous infusions on days 0 and 7 at one of two doses (low dose cohort, 2 × 106/kg, n = 5; high dose cohort, 10 × 106/kg, n = 5). To evaluate safety, patients were monitored for infusion related toxicity, Treatment Related Adverse Events (TRAE) til day 42, or ectopic tissue formation at day 90. Clinical responses were monitored at time points up to 180 days post infusion. Serum biomarkers ST2 and REG3α were acquired 1 day prior to first MSCTC-0010 infusion and on day 14. RESULTS Safety was indicated, e.g., no infusion-related toxicity, no development of TRAE, nor ectopic tissue formation in either low or high dose cohort was observed. Clinical response was suggested at day 28: the overall response rate (ORR) was 70%, 4 of 10 patients had a complete response (CR) and 3 had a partial response (PR). By study day 90, the addition of escalated immunosuppressive therapy was necessary in 2 of 9 surviving patients. Day 100 and 180 post infusion survival was 90% and 60%, respectively. Serum biomarker REG3α decreased, particularly in the high dose cohort, and with REG3α decrease correlated with clinical response. CONCLUSIONS Treatment of patients with de novo HR or SR aGVHD with low or high dose MSCTC-0010 was safe: the infusion was well-tolerated, and no TRAEs or ectopic tissue formation was observed. A clinical improvement was seen in about 70% patients, with 4 of 10 showing a complete response that may have been attributable to MSCTC-0010 infusions. These observations indicate safety of two different doses of MSCTC-0010, and suggest that the 10 × 106 cells/ kg dose be tested in an expanded randomized, controlled Phase 2 trial. Graphical abstract.
Collapse
Affiliation(s)
- Rupal P Soder
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Buddhadeb Dawn
- University of Nevada, Las Vegas School of Medicine, Las Vegas, NV, USA
| | - Mark L Weiss
- Midwest Institute of Comparative Stem Cell Biotechnology and Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Neil Dunavin
- University of California, San Francisco, CA, USA
| | - Scott Weir
- Institute for Advancing Medical Innovation Medical Center, University of Kansas, Kansas City, USA
| | - James Mitchell
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Meizhang Li
- Pathology & Laboratory Medicine, Univeristy of Kansas Medical Center, Kansas City, USA
| | - Leyla Shune
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Anurag K Singh
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Siddhartha Ganguly
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Marc Morrison
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Haitham Abdelhakim
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Andrew K Godwin
- Pathology & Laboratory Medicine, Univeristy of Kansas Medical Center, Kansas City, USA
| | - Sunil Abhyankar
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, Kansas City, KS, USA
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Joseph McGuirk
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA.
| |
Collapse
|
2
|
Leyendecker A, Pinheiro CCG, Amano MT, Bueno DF. The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Front Immunol 2018; 9:2056. [PMID: 30254638 PMCID: PMC6141714 DOI: 10.3389/fimmu.2018.02056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: One of the greatest challenges for medicine is to find a safe and effective treatment for immune-related diseases. However, due to the low efficacy of the treatment available and the occurrence of serious adverse effects, many groups are currently searching for alternatives to the traditional therapy. In this regard, the use of human mesenchymal stem cells (hMSCs) represents a great promise for the treatment of a variety of immune-related diseases due to their potent immunomodulatory properties. The main objective of this study is, therefore, to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of the administration of hMSCs for the treatment of immune-related diseases was evaluated. Methods: The article search was conducted in PubMed/MEDLINE, Scopus and Web of Science databases. Original research articles assessing the therapeutic potential of hMSCs administration for the in vivo treatment immune-related diseases, published from 1984 to December 2017, were selected and evaluated. Results: A total of 132 manuscripts formed the basis of this systematic review. Most of the studies analyzed reported positive results after hMSCs administration. Clinical effects commonly observed include an increase in the survival rates and a reduction in the severity and incidence of the immune-related diseases studied. In addition, hMSCs administration resulted in an inhibition in the proliferation and activation of CD19+ B cells, CD4+ Th1 and Th17 cells, CD8+ T cells, NK cells, macrophages, monocytes, and neutrophils. The clonal expansion of both Bregs and Tregs cells, however, was stimulated. Administration of hMSCs also resulted in a reduction in the levels of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1, IL-2, IL-12, and IL-17 and in an increase in the levels of immunoregulatory cytokines such as IL-4, IL-10, and IL-13. Conclusions: The results obtained in this study open new avenues for the treatment of immune-related diseases through the administration of hMSCs and emphasize the importance of the conduction of further studies in this area.
Collapse
|
3
|
Seng A, Dunavin N. Mesenchymal stromal cell infusions for acute graft-versus-host disease: Rationale, data, and unanswered questions. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/acg2.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amara Seng
- Department of Microbiology; Molecular Genetics and Immunology; University of Kansas Medical Center; Kansas City Kansas
| | - Neil Dunavin
- Division of Hematological Malignancies and Cellular Therapeutics; Department of Internal Medicine; University of Kansas Medical Center; Kansas City Kansas
| |
Collapse
|
4
|
Sadeghi B, Heshmati Y, Khoein B, Kaipe H, Uzunel M, Walfridsson J, Ringdén O. Xeno-immunosuppressive properties of human decidual stromal cells in mouse models of alloreactivity in vitro and in vivo. Cytotherapy 2015; 17:1732-45. [DOI: 10.1016/j.jcyt.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/20/2015] [Accepted: 09/03/2015] [Indexed: 01/26/2023]
|
5
|
Klinker MW, Wei CH. Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem Cells 2015; 7:556-567. [PMID: 25914763 PMCID: PMC4404391 DOI: 10.4252/wjsc.v7.i3.556] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/07/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal cells [also known as mesenchymal stem cells (MSCs)] are currently being studied as a cell-based treatment for inflammatory disorders. Experimental animal models of human immune-mediated diseases have been instrumental in establishing their immunosuppressive properties. In this review, we summarize recent studies examining the effectiveness of MSCs as immunotherapy in several widely-studied animal models, including type 1 diabetes, experimental autoimmune arthritis, experimental autoimmune encephalomyelitis, inflammatory bowel disease, graft-vs-host disease, and systemic lupus erythematosus. In addition, we discuss mechanisms identified by which MSCs mediate immune suppression in specific disease models, and potential sources of functional variability of MSCs between studies.
Collapse
|
6
|
McGuirk JP, Smith JR, Divine CL, Zuniga M, Weiss ML. Wharton's Jelly-Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategy for the Management of Graft-versus-Host Disease. Pharmaceuticals (Basel) 2015; 8:196-220. [PMID: 25894816 PMCID: PMC4491656 DOI: 10.3390/ph8020196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/13/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT), a treatment option in hematologic malignancies and bone marrow failure syndromes, is frequently complicated by Graft-versus-host disease (GVHD). The primary treatment for GVHD involves immune suppression by glucocorticoids. However, patients are often refractory to the steroid therapy, and this results in a poor prognosis. Therefore alternative therapies are needed to treat GVHD. Here, we review data supporting the clinical investigation of a novel cellular therapy using Wharton’s jelly (WJ)-derived mesenchymal stromal cells (MSCs) as a potentially safe and effective therapeutic strategy in the management of GVHD. Adult-derived sources of MSCs have demonstrated signals of efficacy in the management of GVHD. However, there are limitations, including: limited proliferation capacity; heterogeneity of cell sources; lengthy expansion time to clinical dose; expansion failure in vitro; and a painful, invasive, isolation procedure for the donor. Therefore, alternative MSC sources for cellular therapy are sought. The reviewed data suggests MSCs derived from WJ may be a safe and effective cellular therapy for GVHD. Laboratories investigated and defined the immune properties of WJ-MSCs for potential use in cellular therapy. These cells represent a more uniform cell population than bone marrow-derived MSCs, displaying robust immunosuppressive properties and lacking significant immunogenicity. They can be collected safely and painlessly from individuals at birth, rapidly expanded and stored cryogenically for later clinical use. Additionally, data we reviewed suggested licensing MSCs (activating MSCs by exposure to cytokines) to enhance effectiveness in treating GVHD. Therefore, WJCs should be tested as a second generation, relatively homogeneous allogeneic cell therapy for the treatment of GVHD.
Collapse
Affiliation(s)
- Joseph P McGuirk
- Blood and Marrow Transplant Program, The University of Kansas Medical Center, 2330 Shawnee Mission Pkwy., Suite 210 Mailstop 5003, Westwood, KS 66205, USA.
| | - J Robert Smith
- Department of Anatomy and Physiology, Kansas State University, 1600 Denison Ave., Coles Hall 228, Manhattan, KS 66506-5802, USA.
| | - Clint L Divine
- Blood and Marrow Transplant Program, The University of Kansas Medical Center, 2330 Shawnee Mission Pkwy., Suite 210 Mailstop 5003, Westwood, KS 66205, USA
| | - Micheal Zuniga
- Department of Anatomy and Physiology, Kansas State University, 1600 Denison Ave., Coles Hall 228, Manhattan, KS 66506-5802, USA.
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, 1600 Denison Ave., Coles Hall 228, Manhattan, KS 66506-5802, USA.
| |
Collapse
|
7
|
Abstract
Two opposing descriptions of so-called mesenchymal stem cells (MSCs) exist at this time. One sees MSCs as the postnatal, self-renewing, and multipotent stem cells for the skeleton. This cell coincides with a specific type of bone marrow perivascular cell. In skeletal physiology, this skeletal stem cell is pivotal to the growth and lifelong turnover of bone and to its native regeneration capacity. In hematopoietic physiology, its role as a key player in maintaining hematopoietic stem cells in their niche and in regulating the hematopoietic microenvironment is emerging. In the alternative description, MSCs are ubiquitous in connective tissues and are defined by in vitro characteristics and by their use in therapy, which rests on their ability to modulate the function of host tissues rather than on stem cell properties. Here, I discuss how the two views developed, conceptually and experimentally, and attempt to clarify the confusion arising from their collision.
Collapse
Affiliation(s)
- Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
8
|
Kaipe H, Erkers T, Sadeghi B, Ringdén O. Stromal cells–are they really useful for GVHD? Bone Marrow Transplant 2014; 49:737-43. [DOI: 10.1038/bmt.2013.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
9
|
Yoo HS, Yi T, Cho YK, Kim WC, Song SU, Jeon MS. Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease. Immune Netw 2013; 13:133-40. [PMID: 24009540 PMCID: PMC3759710 DOI: 10.4110/in.2013.13.4.133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 12/29/2022] Open
Abstract
Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft-versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and IFN-γ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.
Collapse
Affiliation(s)
- Hyun Seung Yoo
- Translational Research Center, Inha University School of Medicine, Incheon 400-711, Korea. ; Department of Drug Development, Inha University School of Medicine, Incheon 400-711, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Tobin LM, Healy ME, English K, Mahon BP. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease. Clin Exp Immunol 2013; 172:333-48. [PMID: 23574329 DOI: 10.1111/cei.12056] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a life-threatening complication following allogeneic haematopoietic stem cell transplantation (HSCT), occurring in up to 30-50% of patients who receive human leucocyte antigen (HLA)-matched sibling transplants. Current therapies for steroid refractory aGVHD are limited, with the prognosis of patients suboptimal. Mesenchymal stem or stromal cells (MSC), a heterogeneous cell population present in many tissues, display potent immunomodulatory abilities. Autologous and allogeneic ex-vivo expanded human MSC have been utilized to treat aGVHD with promising results, but the mechanisms of therapeutic action remain unclear. Here a robust humanized mouse model of aGVHD based on delivery of human peripheral blood mononuclear cells (PBMC) to non-obese diabetic (NOD)-severe combined immunodeficient (SCID) interleukin (IL)-2rγ(null) (NSG) mice was developed that allowed the exploration of the role of MSC in cell therapy. MSC therapy resulted in the reduction of liver and gut pathology and significantly increased survival. Protection was dependent upon the timing of MSC therapy, with conventional MSC proving effective only after delayed administration. In contrast, interferon (IFN)-γ-stimulated MSC were effective when delivered with PBMC. The beneficial effect of MSC therapy in this model was not due to the inhibition of donor PBMC chimerism, as CD45(+) and T cells engrafted successfully in this model. MSC therapy did not induce donor T cell anergy, FoxP3(+) T regulatory cells or cause PBMC apoptosis in this model; however, it was associated with the direct inhibition of donor CD4(+) T cell proliferation and reduction of human tumour necrosis factor-α in serum.
Collapse
Affiliation(s)
- L M Tobin
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
11
|
McGuirk J, Weiss M. Promising cellular therapeutics for prevention or management of graft-versus-host disease (a review). Placenta 2011; 32 Suppl 4:S304-10. [PMID: 21658764 PMCID: PMC3760226 DOI: 10.1016/j.placenta.2011.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/04/2011] [Accepted: 04/17/2011] [Indexed: 12/14/2022]
Abstract
Graft-versus-host disease (GVHD) frequently occurs following allogeneic hematopoietic stem cell transplantation. The primary treatment for GVHD involves immune suppression by glucocorticoids. If patients become refractory to steroids, they have a poor prognosis. Therefore, there is a pressing need for alternative therapies to treat GVHD. Here, we review clinical data which demonstrate that a cellular therapy using mesenchymal stromal cells (MSCs) is safe and effective for GVHD. Since MSCs derived from bone marrow present certain limitations (such as time lag for expansion to clinical dose, expansion failure in vitro, painful and invasive bone marrow MSC isolation procedures), alternative sources of MSCs for cellular therapy are being sought. Here, we review data which support the notion that MSCs derived from Wharton's jelly (WJ) may be a safe and effective cellular therapy for GVHD. Many laboratories have investigated the immune properties of these discarded MSCs with an eye towards their potential use in cellular therapy. We also review data which support the notion that the licensing of MSCs (meaning the activation of MSCs by prior exposure to cytokines such as interferon-γ) may enhance their effectiveness for treatment of GVHD. In conclusion, WJCs can be collected safely and painlessly from individuals at birth, similar to the collection of cord blood, and stored cryogenically for later clinical use. Therefore, WJCs should be tested as a second generation, off-the-shelf cell therapy for the prevention or treatment of immune disorders such as GVHD.
Collapse
Affiliation(s)
- J.P. McGuirk
- University of Kansas Medical Center, Blood and Marrow Transplant Program, KS, USA
| | - M.L. Weiss
- Kansas State University, Dept of Anatomy and Physiology, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Jeon MS, Hong SS. [Preclinical experience in stem cell therapy for digestive tract diseases]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2011; 58:133-8. [PMID: 21960100 DOI: 10.4166/kjg.2011.58.3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Adult stem cells are multipotent and self-renewing cells that contain several functions; i) migration and homing potential: stem cells can migrate to injured and inflamed tissues. ii) differentiation potential: stem cells which migrated to injured tissues can be differentiated into multiple cell types for repairing and regenerating the tissues. iii) immunomodulatory properties: stem cells, especially mesenchymal stem cells can suppress immune system such as inflammation. All those characteristics might be useful for the treatment of the digestive tract diseases which are complex and encompass a broad spectrum of different pathogenesis. Preclinical stem cell therapy showed some promising results, especially in liver failure, pancreatitis, sepsis, and inflammatory bowel disease. If we can understand more about the mechanism of stem cell action, stem cell therapy can become a promising alternative treatment for refractory digestive disease in the near future. In this review, we summarized current preclinical experiences in diseases of the digestive tract using stem cells. (Korean J Gastroenterol 2011;58:133-138).
Collapse
Affiliation(s)
- Myung Shin Jeon
- Clinical Research Center, School of Medicine, Inha University, Incheon, Korea
| | | |
Collapse
|