1
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|
2
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:1916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| |
Collapse
|
3
|
Niu GJ, Xu JD, Yuan WJ, Sun JJ, Yang MC, He ZH, Zhao XF, Wang JX. Protein Inhibitor of Activated STAT (PIAS) Negatively Regulates the JAK/STAT Pathway by Inhibiting STAT Phosphorylation and Translocation. Front Immunol 2018; 9:2392. [PMID: 30416501 PMCID: PMC6212522 DOI: 10.3389/fimmu.2018.02392] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Protein inhibitor of activated STAT (PIAS) proteins are activation-suppressing proteins for signal transducer and activator of transcription (STAT), which involves gene transcriptional regulation. The inhibitory mechanism of PIAS proteins in the Janus kinase (JAK)/STAT signaling pathway has been well studied in mammals and Drosophila. However, the roles of PIAS in crustaceans are unclear. In the present study, we identified PIAS in kuruma shrimp Marsupenaeus japonicus and found that its relative expression could be induced by Vibrio anguillarum stimulation. To explore the function of PIAS in shrimp infected with V. anguillarum, we performed an RNA interference assay. After knockdown of PIAS expression in shrimp subjected to V. anguillarum infection, bacterial clearance was enhanced and the survival rate increased compared with those in the control shrimp (dsGFP injection). Simultaneously, the expression levels of antimicrobial peptides (AMPs), including anti-lipopolysaccharide factor (ALF) A1, C1, C2, and CruI-1, increased. Further study revealed that knockdown of PIAS also enhanced STAT phosphorylation and translocation. Pulldown assay indicated that PIAS interacts with activated STAT in shrimp. In conclusion, PIAS negatively regulates JAK/STAT signaling by inhibiting the phosphorylation and translocation of STAT through the interaction between PIAS and STAT, which leads to the reduction of AMP expression in shrimp. Our results revealed a new mechanism of PIAS-mediated gene regulation of the STAT signal pathway.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Wen-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|
5
|
Protein Inhibitor of Activated STAT Y (PIASy) Regulates Insulin Secretion by Interacting with LIM Homeodomain Transcription Factor Isl1. Sci Rep 2016; 6:39308. [PMID: 28000708 PMCID: PMC5175275 DOI: 10.1038/srep39308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022] Open
Abstract
It is known that the LIM homeodomain transcription factor Isl1 is highly expressed in all pancreatic endocrine cells and functions in regulating pancreatic development and insulin secretion. The Isl1 mutation has been found to be associated with type 2 diabetes, but the mechanism responsible for Isl1 regulation of insulin synthesis and secretion still needs to be elucidated. In the present study, the protein inhibitor of activated STAT Y (PIASy) was identified as a novel Isl1-interacting protein with a yeast two-hybrid system, and its interaction with Isl1 was further confirmed by a co-immunoprecipitation experiment. PIASy and Isl1 colocalize in human and mouse pancreas and NIT beta cells. Furthermore, PIASy and Isl1 upregulate insulin gene expression and insulin secretion in a dose-dependent manner by activating the insulin promoter. PIASy and Isl1 mRNA expression levels were also increased in type 2 diabetic db/db mice. In addition, our results demonstrate that PIASy and Isl1 cooperate to activate the insulin promoter through the Isl1 homeodomain and PIASy ring domain. These data suggest that that PIASy regulates insulin synthesis and secretion by interacting with Isl1 and provide new insight into insulin regulation, although the detailed molecular mechanism needs to be clarified in future studies.
Collapse
|
6
|
Kong X, Ma S, Guo J, Ma Y, Hu Y, Wang J, Zheng Y. Ubiquitously expressed transcript is a novel interacting protein of protein inhibitor of activated signal transducer and activator of transcription 2. Mol Med Rep 2014; 11:2443-8. [PMID: 25434787 PMCID: PMC4337631 DOI: 10.3892/mmr.2014.3023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022] Open
Abstract
Protein inhibitor of activated signal transducer and activator of transcription 2 (PIAS2) is a member of the PIAS protein family. This protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. To improve understanding of the physiological roles of PIAS2, the current study used a yeast two-hybrid system to screen mouse stem cell cDNA libraries for proteins that interact with PIAS2. The screening identified an interaction between PIAS2 and ubiquitously expressed transcript (UXT). UXT, also termed androgen receptor trapped clone-27, is an α-class prefoldin-type chaperone that acts as a coregulator for various transcription factors, including nuclear factor-κB and androgen receptor (AR). A direct interaction between PIAS2 and UXT was confirmed by direct yeast two-hybrid analysis. In vitro evidence of the association of UXT with PIAS2 was obtained by co-immunoprecipitation. Colocalization between PIAS2 and UXT was identified in the nucleus and cytoplasm of HEK 293T and human cervical carcinoma HeLa cells. The results of the current study suggested that UXT is a binding protein of PIAS2, and interaction between PIAS2 and UXT may be important for the transcriptional activation of AR.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Gynecology and Obstetrics, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Shikun Ma
- Department of Histology and Embryology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaqian Guo
- Department of Histology and Embryology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yan Ma
- Department of Gynecology and Obstetrics, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yanqiu Hu
- Reproductive Medicine Center, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jianjun Wang
- Department of Histology and Embryology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ying Zheng
- Department of Histology and Embryology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
7
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
8
|
Ivanschitz L, De Thé H, Le Bras M. PML, SUMOylation, and Senescence. Front Oncol 2013; 3:171. [PMID: 23847762 PMCID: PMC3701148 DOI: 10.3389/fonc.2013.00171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022] Open
Abstract
Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation… there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence, and SUMOylation, notably in the context of cellular transformation.
Collapse
Affiliation(s)
- Lisa Ivanschitz
- University Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis , Paris , France ; INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis , Paris , France ; CNRS UMR 7212, Hôpital St. Louis , Paris , France
| | | | | |
Collapse
|
9
|
Jena S, Lee WP, Doherty D, Thompson PD. PIAS4 represses vitamin D receptor-mediated signaling and acts as an E3-SUMO ligase towards vitamin D receptor. J Steroid Biochem Mol Biol 2012; 132:24-31. [PMID: 22564762 DOI: 10.1016/j.jsbmb.2012.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 04/16/2012] [Accepted: 04/19/2012] [Indexed: 12/30/2022]
Abstract
The present study investigated the potential for members of the protein inhibitors of activated STAT (PIAS) family to function as co-regulators of the vitamin D signal pathway. Among the PIAS proteins evaluated, we establish PIAS4 as a potent inhibitor of the transcriptional responses of the CYP3A4 and CYP24A1 target genes to the active hormonal form of vitamin D, a repression that was observed to be dependent upon an intact SUMO-ligase function of PIAS4. We report that PIAS4 represents a direct binding partner for vitamin D receptor (VDR) and also facilitates its modification with SUMO2, a process that preferentially occurs on the apo-form of VDR and which is reversed upon binding of ligand. Our results implicate PIAS4 and the process of SUMOylation as important modulators of VDR-mediated signaling which may both represent flexible mechanistic components as to how vitamin D achieves its pleiotropic effects.
Collapse
Affiliation(s)
- Sarita Jena
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | | | | | | |
Collapse
|
10
|
Zheng Y, Sheng S, Wang H, Jia X, Hu Y, Qian Y, Zhu Y, Wang J. Identification of Pold2 as a novel interaction partner of protein inhibitor of activated STAT2. Int J Mol Med 2012; 30:884-8. [PMID: 22824807 DOI: 10.3892/ijmm.2012.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Pold2 is a subunit of the DNA polymerase δ complex, encoding a protein involved in DNA replication and repair. In this study, using a yeast two-hybrid screening technique and the common cDNA fragment of the mouse PIAS2 as a bait, Pold2 was found to interact with PIAS2. A direct interaction between Pold2 and PIAS2 was confirmed by direct yeast two-hybrid. In vivo evidence of Pold2 association with PIAS2 was obtained by co-immunoprecipitation using HEK-293 cells. Subcellular localization studies demonstrated that Pold2 and PIAS2 were partially co-localized in mammalian cells. Collectively, our results suggest that Pold2 interacts under physiological conditions with PIAS2.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hoefer J, Schäfer G, Klocker H, Erb HH, Mills IG, Hengst L, Puhr M, Culig Z. PIAS1 Is Increased in Human Prostate Cancer and Enhances Proliferation through Inhibition of p21. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2097-107. [DOI: 10.1016/j.ajpath.2012.01.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/17/2011] [Accepted: 01/13/2012] [Indexed: 10/28/2022]
|
12
|
Zheng Y, Zhang L, Jia X, Wang H, Hu Y. Interaction of protein inhibitor of activated STAT 2 (PIAS2) with receptor of activated C kinase 1, RACK1. FEBS Lett 2011; 586:122-6. [PMID: 22210188 DOI: 10.1016/j.febslet.2011.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 12/11/2022]
Abstract
In this study, the evolutionarily conserved intracellular adaptor protein, receptor of activated C kinase 1 (RACK1) was identified as a novel interaction partner of protein inhibitor of activated STAT 2 (PIAS2) using a yeast two-hybrid screening system. The direct interaction and co-localization of RACK1 with PIAS2 was confirmed by immunoprecipitation and immunofluorescence staining analysis, respectively. The 5th to 7th Trp-Asp 40 (5-7 WD40) repeats of RACK1 were identified as the minimal domain required for interaction with PIAS2 by deletion analysis. Furthermore, multiple PIAS2-domains, particularly the 'PINIT' and RLD domains, bind the RACK1 5-7 WD40 domain.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou 225001, China.
| | | | | | | | | |
Collapse
|
13
|
Ozaki T, Kubo N, Nakagawara A. p73-Binding Partners and Their Functional Significance. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:283863. [PMID: 22084676 PMCID: PMC3195385 DOI: 10.1155/2010/283863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/26/2010] [Indexed: 12/21/2022]
Abstract
p73 is one of the tumor-suppressor p53 family of nuclear transcription factor. As expected from the structural similarity between p53 and p73, p73 has a tumor-suppressive function. However, p73 was rarely mutated in human primary tumors. Under normal physiological conditions, p73 is kept at an extremely low level to allow cells normal growth. In response to a certain subset of DNA damages, p73 is induced dramatically and transactivates an overlapping set of p53-target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death. Cells undergo cell cycle arrest and/or apoptotic cell death depending on the type and strength of DNA damages. p73 is regulated largely through the posttranslational modifications such as phosphorylation and acetylation. These chemical modifications are tightly linked to direct protein-protein interactions. In the present paper, the authors describe the functional significance of the protein-protein interactions in the regulation of proapoptotic p73.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | |
Collapse
|