1
|
Chen JX, Han YS, Zhang SQ, Li ZB, Chen J, Yi WJ, Huang H, Jiang TT, Li JC. Novel therapeutic evaluation biomarkers of lipid metabolism targets in uncomplicated pulmonary tuberculosis patients. Signal Transduct Target Ther 2021; 6:22. [PMID: 33462176 PMCID: PMC7814055 DOI: 10.1038/s41392-020-00427-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023] Open
Abstract
Currently, the management of pulmonary tuberculosis (TB) lacks potent medications and accurate efficacy evaluation biomarkers. In view of the fact that the host lipids are the important energy source of Mycobacterium tuberculosis (Mtb), UPLC-MS/MS based on lipid metabolism was used to monitor the plasma lipid spectrum of TB patients from the initial diagnosis to cured. The analysis showed that TB patients presented aberrant metabolism of phospholipids, glycerides, and sphingolipids. Upon the treatment, the abnormal expression of Cer (d18:1/24:0), CerP (d18:1/20:3), LPE (0:0/22:0), LPA (0:0/16:0), and LPA (0:0/18:0) in TB patients were gradually normalized, indicating that the intervention of lipid metabolism could block energy metabolism and inhibit the cell wall synthesis of Mtb. Furthermore, the increase in ceramide (Cer) levels could promote autophagosome-lysosome fusion. LPA (0:0/16:0) and LPA (0:0/18:0) had a great potential in the early diagnosis (both sensitivity and specificity were 100%) and efficacy evaluation (both sensitivity and specificity were 100%) of TB, indicating that the above lipid metabolites could be used as potential biomarkers for TB.
Collapse
Affiliation(s)
- Jia-Xi Chen
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
- Department of Histology and Embryology, Shaoguan University School of Medicine, 512025, Shaoguan, China
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 318050, Taizhou, China
| | - Yu-Shuai Han
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shan-Qiang Zhang
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
| | - Zhi-Bin Li
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jing Chen
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Wen-Jing Yi
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
| | - Huai Huang
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
| | - Ting-Ting Jiang
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
- Department of Histology and Embryology, Shaoguan University School of Medicine, 512025, Shaoguan, China
| | - Ji-Cheng Li
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China.
- Department of Histology and Embryology, Shaoguan University School of Medicine, 512025, Shaoguan, China.
| |
Collapse
|
2
|
Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Front Immunol 2018; 9:155. [PMID: 29459867 PMCID: PMC5807682 DOI: 10.3389/fimmu.2018.00155] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Liposomes are closed bilayer structures spontaneously formed by hydrated phospholipids that are widely used as efficient delivery systems for drugs or antigens, due to their capability to encapsulate bioactive hydrophilic, amphipathic, and lipophilic molecules into inner water phase or within lipid leaflets. The efficacy of liposomes as drug or antigen carriers has been improved in the last years to ameliorate pharmacokinetics and capacity to release their cargo in selected target organs or cells. Moreover, different formulations and variations in liposome composition have been often proposed to include immunostimulatory molecules, ligands for specific receptors, or stimuli responsive compounds. Intriguingly, independent research has unveiled the capacity of several phospholipids to play critical roles as intracellular messengers in modulating both innate and adaptive immune responses through various mechanisms, including (i) activation of different antimicrobial enzymatic pathways, (ii) driving the fusion–fission events between endosomes with direct consequences to phagosome maturation and/or to antigen presentation pathway, and (iii) modulation of the inflammatory response. These features can be exploited by including selected bioactive phospholipids in the bilayer scaffold of liposomes. This would represent an important step forward since drug or antigen carrying liposomes could be engineered to simultaneously activate different signal transduction pathways and target specific cells or tissues to induce antigen-specific T and/or B cell response. This lipid-based host-directed strategy can provide a focused antimicrobial innate and adaptive immune response against specific pathogens and offer a novel prophylactic or therapeutic option against chronic, recurrent, or drug-resistant infections.
Collapse
Affiliation(s)
- Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Federica De Santis
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Greco E, Quintiliani G, Santucci MB, Serafino A, Ciccaglione AR, Marcantonio C, Papi M, Maulucci G, Delogu G, Martino A, Goletti D, Sarmati L, Andreoni M, Altieri A, Alma M, Caccamo N, Di Liberto D, De Spirito M, Savage ND, Nisini R, Dieli F, Ottenhoff TH, Fraziano M. Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 2012; 109:E1360-E1368. [PMID: 22538807 PMCID: PMC3361443 DOI: 10.1073/pnas.1200484109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca(2+) influx, (iii) promote Ca(2+)-dependent maturation of phagolysosomes containing Mycobacterium tuberculosis (MTB), (iv) induce Ca(2+)-dependent reactive oxygen species (ROS) production, (v) inhibit intracellular mycobacterial growth in differentiated THP-1 cells as well as in type-1 and -2 human macrophages, and (vi) down-regulate tumor necrosis factor (TNF)-α, interleukin (IL)-12, IL-1β, IL-18, and IL-23 and up-regulate transforming growth factor (TGF)-β without altering IL-10, IL-27, and IL-6 mRNA expression. Also, ABL/PA promoted intracellular killing of M. tuberculosis in bronchoalveolar lavage cells from patients with active pulmonary tuberculosis. Furthermore, the treatment of MTB-infected mice with ABL/PA, in combination or not with isoniazid (INH), dramatically reduced lung and, to a lesser extent, liver and spleen mycobacterial loads, with a concomitant 10-fold reduction of serum TNF-α, IL-1β, and IFN-γ compared with that in untreated mice. Altogether, these results suggest that apoptotic body-like liposomes may be used as a Janus-faced immunotherapeutic platform to deliver polar secondary lipid messengers, such as PA, into phagocytes to improve and recover phagolysosome biogenesis and pathogen killing while limiting the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Anna Rita Ciccaglione
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Cinzia Marcantonio
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | - Giovanni Delogu
- Microbiology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Angelo Martino
- Department of Epidemiology and Preclinical Research, National Institute of Infectious Diseases “Lazzaro Spallanzani,” 00149 Rome, Italy
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, National Institute of Infectious Diseases “Lazzaro Spallanzani,” 00149 Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Diseases, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Massimo Andreoni
- Clinical Infectious Diseases, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Alfonso Altieri
- Unit of Tisiology and Bronchopneumology, S. Camillo-Forlanini Hospital, 00151 Rome, Italy
| | - Mario Alma
- Unit of Tisiology and Bronchopneumology, S. Camillo-Forlanini Hospital, 00151 Rome, Italy
| | - Nadia Caccamo
- Department of Biopathology and Medical and Forensics Biotechnologies, University of Palermo, 90135 Palermo, Italy; and
| | - Diana Di Liberto
- Department of Biopathology and Medical and Forensics Biotechnologies, University of Palermo, 90135 Palermo, Italy; and
| | | | - Nigel D. Savage
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Roberto Nisini
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco Dieli
- Department of Biopathology and Medical and Forensics Biotechnologies, University of Palermo, 90135 Palermo, Italy; and
| | - Tom H. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | | |
Collapse
|